論文の概要: Discussion: Effective and Interpretable Outcome Prediction by Training Sparse Mixtures of Linear Experts
- arxiv url: http://arxiv.org/abs/2407.13526v1
- Date: Thu, 18 Jul 2024 13:59:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:10:55.447495
- Title: Discussion: Effective and Interpretable Outcome Prediction by Training Sparse Mixtures of Linear Experts
- Title(参考訳): 線形エキスパートのスパースミックスによる効果的かつ解釈可能なアウトカム予測に関する考察
- Authors: Francesco Folino, Luigi Pontieri, Pietro Sabatino,
- Abstract要約: 我々は,ゲートと専門家のサブネットの両方がロジスティック回帰器である,スパースミクチャー・オブ・エキスパートを訓練することを提案する。
このアンサンブルのようなモデルは、各サブネット内の入力機能のサブセットを自動的に選択しながら、エンドツーエンドで訓練される。
- 参考スコア(独自算出の注目度): 4.178382980763478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Process Outcome Prediction entails predicting a discrete property of an unfinished process instance from its partial trace. High-capacity outcome predictors discovered with ensemble and deep learning methods have been shown to achieve top accuracy performances, but they suffer from a lack of transparency. Aligning with recent efforts to learn inherently interpretable outcome predictors, we propose to train a sparse Mixture-of-Experts where both the ``gate'' and ``expert'' sub-nets are Logistic Regressors. This ensemble-like model is trained end-to-end while automatically selecting a subset of input features in each sub-net, as an alternative to the common approach of performing a global feature selection step prior to model training. Test results on benchmark logs confirmed the validity and efficacy of this approach.
- Abstract(参考訳): プロセスアウトカム予測では、未完了のプロセスインスタンスの離散特性をその部分トレースから予測する。
アンサンブル法と深層学習法で発見された高容量結果予測器は、最高精度のパフォーマンスを達成することが示されているが、透明性の欠如に悩まされている。
そこで本研究では,「ゲート」と「エキスパート」の2つのサブネットがロジスティック回帰器であるような,スパース・ミックス・オブ・エキスパートを訓練することを提案する。
このアンサンブルのようなモデルは、各サブネットにおける入力機能のサブセットを自動的に選択しながら、エンドツーエンドで訓練される。
ベンチマークログの試験結果から, 本手法の有効性と有効性が確認された。
関連論文リスト
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
本稿では,新しい教師なしアンサンブル学習モデル(SUEL)を提案する。
連続的な予測スコアを持つ予測器のセット間の依存関係を利用して、ラベル付きデータなしで予測器をランク付けし、それらをアンサンブルされたスコアに重み付けする。
提案手法の有効性は、シミュレーション研究とリスク遺伝子発見の現実的応用の両方を通じて厳密に評価されている。
論文 参考訳(メタデータ) (2024-08-14T20:14:42Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
本稿では,教師付きコントラスト学習を利用して,事前学習データセット内の特徴を識別する新しい事前学習手法を提案する。
次に、事前学習データセットの学習力学とより密に連携することで、目標データの正確な予測を強化するための微調整手順を提案する。
論文 参考訳(メタデータ) (2023-11-21T02:06:52Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Evaluating High-Order Predictive Distributions in Deep Learning [27.076321280462057]
共同予測分布は意思決定における優れた性能に不可欠である。
本稿では,入力のランダムなテキストペアに関連する予測分布に着目したテクスタイディックサンプリングを提案する。
本手法は, 単純なロジスティック回帰を含む高次元のエージェントと, 複雑な合成データと経験データとを効率よく区別できることを実証する。
論文 参考訳(メタデータ) (2022-02-28T02:10:00Z) - Parameter Decoupling Strategy for Semi-supervised 3D Left Atrium
Segmentation [0.0]
本稿では,パラメータ分離戦略に基づく半教師付きセグメンテーションモデルを提案する。
提案手法は,Atrial Challengeデータセット上での最先端の半教師付き手法と競合する結果を得た。
論文 参考訳(メタデータ) (2021-09-20T14:51:42Z) - Network Classifiers Based on Social Learning [71.86764107527812]
空間と時間に対して独立に訓練された分類器を結合する新しい手法を提案する。
提案したアーキテクチャは、ラベルのないデータで時間とともに予測性能を改善することができる。
この戦略は高い確率で一貫した学習をもたらすことが示され、未訓練の分類器に対して頑健な構造が得られる。
論文 参考訳(メタデータ) (2020-10-23T11:18:20Z) - Video Prediction via Example Guidance [156.08546987158616]
ビデオ予測タスクでは、将来のコンテンツとダイナミクスのマルチモーダルな性質を捉えることが大きな課題である。
本研究では,有効な将来状態の予測を効果的に行うための,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:57:24Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。