論文の概要: Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.13642v1
- Date: Thu, 18 Jul 2024 16:20:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 14:41:26.061406
- Title: Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models
- Title(参考訳): テキストと画像の拡散モデルを用いたオープンボキャブラリ3次元セマンティックセマンティックセグメンテーション
- Authors: Xiaoyu Zhu, Hao Zhou, Pengfei Xing, Long Zhao, Hao Xu, Junwei Liang, Alexander Hauptmann, Ting Liu, Andrew Gallagher,
- Abstract要約: Diff2Sceneは、テキスト画像生成モデルからの凍結表現と、サルエント・アウェアと幾何学的アウェアマスクを併用して、オープンな3次元セマンティックセマンティックセグメンテーションと視覚的グラウンドニングタスクに活用する。
競争ベースラインを上回り、最先端の手法よりも大幅に改善されていることを示す。
- 参考スコア(独自算出の注目度): 57.37244894146089
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we investigate the use of diffusion models which are pre-trained on large-scale image-caption pairs for open-vocabulary 3D semantic understanding. We propose a novel method, namely Diff2Scene, which leverages frozen representations from text-image generative models, along with salient-aware and geometric-aware masks, for open-vocabulary 3D semantic segmentation and visual grounding tasks. Diff2Scene gets rid of any labeled 3D data and effectively identifies objects, appearances, materials, locations and their compositions in 3D scenes. We show that it outperforms competitive baselines and achieves significant improvements over state-of-the-art methods. In particular, Diff2Scene improves the state-of-the-art method on ScanNet200 by 12%.
- Abstract(参考訳): 本稿では,大規模画像カプセルペア上で事前学習した拡散モデルを用いて,オープンな3Dセマンティック理解を実現する。
オープンな3次元セマンティックセマンティックセグメンテーションと視覚的接地作業のために,テキスト画像生成モデルからの凍結表現と,有意な認識マスクと幾何学的認識マスクを併用した新しい手法Diff2Sceneを提案する。
Diff2Sceneはラベル付き3Dデータを取り除き、オブジェクト、外観、素材、場所、およびそれらの構成物を3Dシーンで効果的に識別する。
競争ベースラインを上回り、最先端の手法よりも大幅に改善されていることを示す。
特にDiff2Sceneでは、ScanNet200の最先端メソッドを12%改善している。
関連論文リスト
- View Selection for 3D Captioning via Diffusion Ranking [54.78058803763221]
Cap3D法は、3Dオブジェクトを2Dビューにレンダリングし、事前訓練されたモデルを用いてキャプションを行う。
3Dオブジェクトのレンダリングビューは、標準的な画像キャプションモデルのトレーニングデータから逸脱し、幻覚を引き起こす。
DiffuRankは、3Dオブジェクトとそれらの2Dレンダリングビューのアライメントを評価するために、事前訓練されたテキストから3Dモデルを利用する手法である。
論文 参考訳(メタデータ) (2024-04-11T17:58:11Z) - 3DStyle-Diffusion: Pursuing Fine-grained Text-driven 3D Stylization with
2D Diffusion Models [102.75875255071246]
テキスト駆動型スタイリングによる3Dコンテンツ作成は、マルチメディアとグラフィックコミュニティにとって根本的な課題となっている。
2次元拡散モデルから制御可能な外観と幾何学的ガイダンスを付加した3次元メッシュのきめ細かいスタイリングをトリガーする新しい3DStyle-Diffusionモデルを提案する。
論文 参考訳(メタデータ) (2023-11-09T15:51:27Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
オープンワールドのインスタンスレベルのシーン理解は、アノテーション付きデータセットに存在しない未知のオブジェクトカテゴリを特定し、認識することを目的としている。
モデルは新しい3Dオブジェクトをローカライズし、それらのセマンティックなカテゴリを推論する必要があるため、この課題は難しい。
本稿では,3Dシーンのキャプションを生成するために,画像テキストペアからの広範な知識を符号化する,事前学習型視覚言語基盤モデルを提案する。
論文 参考訳(メタデータ) (2023-08-01T07:50:14Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
単眼画像から動物体のような3D関節形状を推定することは、本質的に困難である。
本稿では,スパース画像コレクションから各物体の形状を再構築する自己教師型フレームワークARTIC3Dを提案する。
我々は、剛性部分変換の下で、描画された形状とテクスチャを微調整することで、現実的なアニメーションを作成する。
論文 参考訳(メタデータ) (2023-06-07T17:47:50Z) - Weakly Supervised 3D Open-vocabulary Segmentation [104.07740741126119]
学習済み基礎モデルCLIPとDINOを弱教師付きで活用することで,3次元オープン語彙セグメンテーションの課題に取り組む。
我々はCLIPとDINOのオープン語彙多様知識とオブジェクト推論能力をニューラルラディアンス場(NeRF)に蒸留する。
提案手法の特筆すべき点は,基礎モデルや蒸留プロセスに手動セグメンテーションアノテーションを必要としない点である。
論文 参考訳(メタデータ) (2023-05-23T14:16:49Z) - Bridging the Domain Gap: Self-Supervised 3D Scene Understanding with
Foundation Models [18.315856283440386]
ファンデーションモデルは、イメージセグメンテーション、オブジェクト検出、視覚言語理解といった2Dおよび言語タスクにおいて顕著な成果を上げている。
3Dシーンの表現学習を豊かにする能力は、ドメインギャップの存在によってほとんど失われる。
そこで我々は,Bridge3Dと呼ばれる斬新な手法を提案し,特徴,セマンティックマスク,基礎モデルからのソースキャプションを用いた3Dモデルの事前学習を行った。
論文 参考訳(メタデータ) (2023-05-15T16:36:56Z) - Vox-E: Text-guided Voxel Editing of 3D Objects [14.88446525549421]
大規模テキスト誘導拡散モデルが注目されているのは、多様な画像を合成できるためである。
本稿では,既存の3次元オブジェクトの編集に潜時拡散モデルのパワーを利用する手法を提案する。
論文 参考訳(メタデータ) (2023-03-21T17:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。