Systematic input scheme of many-boson Hamiltonians with applications to the two-dimensional $φ^4$ theory
- URL: http://arxiv.org/abs/2407.13672v2
- Date: Tue, 15 Oct 2024 20:03:21 GMT
- Title: Systematic input scheme of many-boson Hamiltonians with applications to the two-dimensional $φ^4$ theory
- Authors: Weijie Du, James P. Vary,
- Abstract summary: We present our discussion of this input scheme based on the light-front Hamiltonian of the two-dimensional $phi 4$ theory.
In our input scheme, we employ a set of quantum registers, where each register encodes the occupation of a distinct boson mode as binaries.
We present the spectral calculations of the Hamiltonian utilizing the hybrid quantum-classical symmetry-adapted quantum Krylov subspace diagonalization algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel, systematic input scheme for many-boson Hamiltonians in order to solve field theory problems within the light-front Hamiltonian formalism via quantum computing. We present our discussion of this input scheme based on the light-front Hamiltonian of the two-dimensional $\phi ^4$ theory. In our input scheme, we employ a set of quantum registers, where each register encodes the occupation of a distinct boson mode as binaries. We squeeze the boson operators of each mode and present the Hamiltonian in terms of unique combinations of the squeezed boson operators. We design the circuit modules for these unique combinations. Based on these circuit modules, we block encode the many-boson Hamiltonian utilizing the idea of quantum walk. For demonstration purposes, we present the spectral calculations of the Hamiltonian utilizing the hybrid quantum-classical symmetry-adapted quantum Krylov subspace diagonalization algorithm based on our input scheme, where the quantum computations are performed with the IBM Qiskit quantum simulator. The results of the hybrid calculations agree with exact results.
Related papers
- Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Scalable quantum circuits for exponential of Pauli strings and Hamiltonian simulations [0.0]
We design quantum circuits for the exponential of scaled $n$-qubit Pauli strings using single-qubit rotation gates, Hadamard gate, and CNOT gates.
A key result we derive is that any two Pauli-string operators composed of identity and $X$ gates are permutation similar.
We apply these circuit models to approximate unitary evolution for several classes of Hamiltonians using the Suzuki-Trotter approximation.
arXiv Detail & Related papers (2024-05-22T12:57:09Z) - An Efficient Quantum Circuit for Block Encoding a Pairing Hamiltonian [3.2073712626523765]
We present an efficient quantum circuit for block encoding pairing Hamiltonian often studied in nuclear physics.
Our block encoding scheme does not require mapping the creation and annihilation operators to the Pauli operators and representing the Hamiltonian as a linear combination of unitaries.
The techniques presented can be extended to encode more general second-quantized Hamiltonians.
arXiv Detail & Related papers (2024-02-17T06:04:00Z) - Systematic many-fermion Hamiltonian input scheme and spectral calculations on quantum computers [0.0]
We present a novel input scheme for general second-quantized Hamiltonians of relativistic or non-relativistic many-fermion systems.
Based on our input scheme, we propose a hybrid quantum-classical framework for spectral calculations on future quantum hardwares.
arXiv Detail & Related papers (2024-02-14T06:29:32Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Parallel Quantum Algorithm for Hamiltonian Simulation [9.680246554758343]
A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians.
The running time of our parallel quantum simulation algorithm measured by the quantum circuit depth has a doubly (poly-)logarithmic dependence.
We show that the total gate depth of our algorithm has a $operatornamepolyloglog (1/epsilon)$ dependence in the parallel setting.
arXiv Detail & Related papers (2021-05-25T12:46:33Z) - Dynamical Self-energy Mapping (DSEM) for quantum computing [0.0]
For noisy intermediate-scale quantum (NISQ) devices only a moderate number of qubits with a limited coherence is available.
We present how to bypass this challenge in practical molecular chemistry simulations on NISQ devices by employing a classical-quantum hybrid algorithm.
arXiv Detail & Related papers (2020-10-12T04:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.