Pulse-based optimization of quantum many-body states with Rydberg atoms in optical tweezer arrays
- URL: http://arxiv.org/abs/2507.19153v1
- Date: Fri, 25 Jul 2025 10:51:49 GMT
- Title: Pulse-based optimization of quantum many-body states with Rydberg atoms in optical tweezer arrays
- Authors: Kazuma Nagao, Sergi Julià -Farré, Joseph Vovrosh, Alexandre Dauphin, Seiji Yunoki,
- Abstract summary: We explore a pulse-based variational quantum eigensolver algorithm for Rydberg atoms in optical tweezer arrays.<n>We numerically demonstrate that the ground states of the one-dimensional antiferromagnetic Heisenberg model and the mixed-field Ising model can be accurately prepared.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a pulse-based variational quantum eigensolver (VQE) algorithm for Rydberg atoms in optical tweezer arrays and evaluate its performance on prototypical quantum spin models. We numerically demonstrate that the ground states of the one-dimensional antiferromagnetic Heisenberg model and the mixed-field Ising model can be accurately prepared using an adaptive update algorithm that randomly segments pulse sequences, for systems of up to ten qubits. Furthermore, we propose and validate a hybrid scheme that integrates this pulse-level analog quantum algorithm with a variational quantum gate approach, where digital quantum gates are approximated by optimized analog pulses. This enables efficient measurement of the cost function for target many-body Hamiltonians.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Universal quantum processors in spin systems via robust local pulse sequences [0.0]
We propose a protocol to realize quantum simulation and computation in spin systems with long-range interactions.
Our approach relies on the local addressing of single spins with external fields parametrized by Walsh functions.
We demonstrate and numerically benchmark our protocol with examples from the dynamics of spin models, quantum error correction and quantum optimization algorithms.
arXiv Detail & Related papers (2023-11-17T15:55:04Z) - Characterization and Coherent Control of Spin Qubits with Modulated
Electron Beam and Resonator [0.0]
coherent dynamics and control of spin qubits are essential requirements for quantum technology.
A prominent challenge for coherent control of a spin qubit in a set of qubits is the destructive effect of the applied magnetic field on the coherent dynamics of neighbouring qubits.
We propose a novel scheme to characterize the coherent dynamics of these quantum systems and to coherently control them using a magnetic field.
arXiv Detail & Related papers (2023-03-31T10:29:26Z) - A Hybrid Quantum-Classical Method for Electron-Phonon Systems [40.80274768055247]
We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
arXiv Detail & Related papers (2023-02-20T08:08:51Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Differentiable Analog Quantum Computing for Optimization and Control [14.736412617211538]
We formulate the first differentiable analog quantum computing framework with a specific parameterization design at the analog signal (pulse) level.
We propose a scalable approach to estimate the gradients of quantum dynamics using a forward pass with Monte Carlo sampling.
arXiv Detail & Related papers (2022-10-28T00:28:31Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Simulation of Schwinger's Hamiltonian with Polarisation
Qubits [0.0]
We study the effect of noise on the quantum phase transition in the Schwinger model.
Experiments are built using a free space optical scheme to realize a pair of polarization qubits.
We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system.
arXiv Detail & Related papers (2020-09-21T00:39:01Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems.
The proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost.
arXiv Detail & Related papers (2020-08-31T02:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.