論文の概要: Synthetic Counterfactual Faces
- arxiv url: http://arxiv.org/abs/2407.13922v1
- Date: Thu, 18 Jul 2024 22:22:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 19:23:11.963732
- Title: Synthetic Counterfactual Faces
- Title(参考訳): 合成対物顔
- Authors: Guruprasad V Ramesh, Harrison Rosenberg, Ashish Hooda, Kassem Fawaz,
- Abstract要約: 我々は、ターゲットとなる、対実的で高品質な合成顔データを構築するための生成AIフレームワークを構築します。
私たちのパイプラインには、顔認識システム感度評価や画像理解システムプローブなど、多くのユースケースがあります。
商用ビジョンモデルにおける顔生成パイプラインの有効性を示す。
- 参考スコア(独自算出の注目度): 9.132161819463043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer vision systems have been deployed in various applications involving biometrics like human faces. These systems can identify social media users, search for missing persons, and verify identity of individuals. While computer vision models are often evaluated for accuracy on available benchmarks, more annotated data is necessary to learn about their robustness and fairness against semantic distributional shifts in input data, especially in face data. Among annotated data, counterfactual examples grant strong explainability characteristics. Because collecting natural face data is prohibitively expensive, we put forth a generative AI-based framework to construct targeted, counterfactual, high-quality synthetic face data. Our synthetic data pipeline has many use cases, including face recognition systems sensitivity evaluations and image understanding system probes. The pipeline is validated with multiple user studies. We showcase the efficacy of our face generation pipeline on a leading commercial vision model. We identify facial attributes that cause vision systems to fail.
- Abstract(参考訳): コンピュータビジョンシステムは、人間の顔のようなバイオメトリックスを含む様々なアプリケーションにデプロイされている。
これらのシステムは、ソーシャルメディアのユーザーを特定し、行方不明者を検索し、個人のアイデンティティを検証できる。
コンピュータビジョンモデルは、利用可能なベンチマークの精度で評価されることが多いが、特に顔データにおいて、入力データのセマンティックな分布シフトに対して、その堅牢性と公平性について学ぶには、より注釈付きデータが必要である。
注釈付きデータの中で、反実例は強い説明可能性特性を与える。
自然の顔データ収集は違法にコストがかかるため、ターゲットとした、対実的で高品質な合成顔データを構築するために、生成可能なAIベースのフレームワークを配置する。
我々の合成データパイプラインには、顔認識システム感度評価や画像理解システムプローブなど、多くのユースケースがあります。
パイプラインは複数のユーザスタディで検証されている。
商用ビジョンモデルにおける顔生成パイプラインの有効性を示す。
視覚系が故障する原因となる顔の特徴を同定する。
関連論文リスト
- Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - Synthetic Data for the Mitigation of Demographic Biases in Face
Recognition [10.16490522214987]
本研究では, 顔認識技術に影響を及ぼす人口統計バイアスを, 合成データを用いて緩和する可能性について検討した。
GANDiffFaceによって生成された合成データセットは、制御可能な人口分布と現実的なクラス内変動を用いて、顔認識のためのデータセットを合成できる新しいフレームワークである。
本研究は、顔認識における人口統計バイアスを軽減するために、提案手法と合成データの利用を支持する。
論文 参考訳(メタデータ) (2024-02-02T14:57:42Z) - Face Recognition Using Synthetic Face Data [0.0]
我々は、コンピュータグラフィックスパイプラインを介してデジタル顔のレンダリングによって生成された合成データの有望な応用を強調し、競争力のある結果を得る。
モデルを微調整することで、何十万もの実画像のトレーニングで得られた結果に匹敵する結果が得られる。
また,モデル性能に及ぼすクラス内因子(化粧品,アクセサリー,ヘアカットなど)の追加効果についても検討した。
論文 参考訳(メタデータ) (2023-05-17T09:26:10Z) - Robustness Disparities in Face Detection [64.71318433419636]
本稿では,その顔検出システムの詳細なベンチマークとして,商業モデルと学術モデルのノイズに対する頑健性について検討する。
すべてのデータセットやシステム全体で、$textitmasculineである個人の写真が$textitdarker skin type$$$、$textitdarker$、または$textitdim lighting$は、他のIDよりもエラーの影響を受けやすい。
論文 参考訳(メタデータ) (2022-11-29T05:22:47Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Fairness Indicators for Systematic Assessments of Visual Feature
Extractors [21.141633753573764]
視覚系の害やバイアスの定量化を目的とした3つの公正度指標を提案する。
我々の指標は、フェアネス評価のために収集された既存の公開データセットを使用する。
これらの指標は、新しいコンピュータビジョン技術による幅広い影響の徹底的な分析の代替にはならない。
論文 参考訳(メタデータ) (2022-02-15T17:45:33Z) - Evaluation of Human and Machine Face Detection using a Novel Distinctive
Human Appearance Dataset [0.76146285961466]
画像中の顔を検出する能力において,現在最先端の顔検出モデルを評価する。
評価結果から,顔検出アルゴリズムは多様な外観に適さないことが示された。
論文 参考訳(メタデータ) (2021-11-01T02:20:40Z) - Robustness Disparities in Commercial Face Detection [72.25318723264215]
私たちは、Amazon Rekognition、Microsoft Azure、Google Cloud Platformの3つのシステムの堅牢性に関する、この種の詳細なベンチマークを初めて提示します。
一般的には、年齢、男性像、肌型、薄暗い色合いの人物の写真は、他のアイデンティティーの人物よりも、エラーの影響を受けやすいことが分かりました。
論文 参考訳(メタデータ) (2021-08-27T21:37:16Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - A high fidelity synthetic face framework for computer vision [10.679578971210912]
本稿では, 合成データを用いて, 一貫性とスケールの両立を図りながら, 地中真理アノテーションを含む顔データを合成することを提案する。
パラメトリックな顔モデルと手作りの資産を使って、前例のない品質と多様性でトレーニングデータを生成することができる。
論文 参考訳(メタデータ) (2020-07-16T14:40:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。