Towards Trustworthy AI: A Review of Ethical and Robust Large Language Models
- URL: http://arxiv.org/abs/2407.13934v1
- Date: Sat, 1 Jun 2024 14:47:58 GMT
- Title: Towards Trustworthy AI: A Review of Ethical and Robust Large Language Models
- Authors: Md Meftahul Ferdaus, Mahdi Abdelguerfi, Elias Ioup, Kendall N. Niles, Ken Pathak, Steven Sloan,
- Abstract summary: Large Language Models (LLMs) could transform many fields, but their fast development creates significant challenges for oversight, ethical creation, and building user trust.
This comprehensive review looks at key trust issues in LLMs, such as unintended harms, lack of transparency, vulnerability to attacks, alignment with human values, and environmental impact.
To tackle these issues, we suggest combining ethical oversight, industry accountability, regulation, and public involvement.
- Score: 1.7466076090043157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress in Large Language Models (LLMs) could transform many fields, but their fast development creates significant challenges for oversight, ethical creation, and building user trust. This comprehensive review looks at key trust issues in LLMs, such as unintended harms, lack of transparency, vulnerability to attacks, alignment with human values, and environmental impact. Many obstacles can undermine user trust, including societal biases, opaque decision-making, potential for misuse, and the challenges of rapidly evolving technology. Addressing these trust gaps is critical as LLMs become more common in sensitive areas like finance, healthcare, education, and policy. To tackle these issues, we suggest combining ethical oversight, industry accountability, regulation, and public involvement. AI development norms should be reshaped, incentives aligned, and ethics integrated throughout the machine learning process, which requires close collaboration across technology, ethics, law, policy, and other fields. Our review contributes a robust framework to assess trust in LLMs and analyzes the complex trust dynamics in depth. We provide contextualized guidelines and standards for responsibly developing and deploying these powerful AI systems. This review identifies key limitations and challenges in creating trustworthy AI. By addressing these issues, we aim to build a transparent, accountable AI ecosystem that benefits society while minimizing risks. Our findings provide valuable guidance for researchers, policymakers, and industry leaders striving to establish trust in LLMs and ensure they are used responsibly across various applications for the good of society.
Related papers
- Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Can We Trust AI Agents? An Experimental Study Towards Trustworthy LLM-Based Multi-Agent Systems for AI Ethics [10.084913433923566]
This study examines how trustworthiness-enhancing techniques affect ethical AI output generation.
We design the prototype LLM-BMAS, where agents engage in structured discussions on real-world ethical AI issues.
Discussions reveal terms like bias detection, transparency, accountability, user consent, compliance, fairness evaluation, and EU AI Act compliance.
arXiv Detail & Related papers (2024-10-25T20:17:59Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - The Impossibility of Fair LLMs [59.424918263776284]
The need for fair AI is increasingly clear in the era of large language models (LLMs)
We review the technical frameworks that machine learning researchers have used to evaluate fairness.
We develop guidelines for the more realistic goal of achieving fairness in particular use cases.
arXiv Detail & Related papers (2024-05-28T04:36:15Z) - Navigating LLM Ethics: Advancements, Challenges, and Future Directions [5.023563968303034]
This study addresses ethical issues surrounding Large Language Models (LLMs) within the field of artificial intelligence.
It explores the common ethical challenges posed by both LLMs and other AI systems.
It highlights challenges such as hallucination, verifiable accountability, and decoding censorship complexity.
arXiv Detail & Related papers (2024-05-14T15:03:05Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - The Ethics of Interaction: Mitigating Security Threats in LLMs [1.407080246204282]
The paper delves into the nuanced ethical repercussions of such security threats on society and individual privacy.
We scrutinize five major threats--prompt injection, jailbreaking, Personal Identifiable Information (PII) exposure, sexually explicit content, and hate-based content--to assess their critical ethical consequences and the urgency they create for robust defensive strategies.
arXiv Detail & Related papers (2024-01-22T17:11:37Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
We draw from communication theories and literature on trust in technologies to develop a conceptual model called MATCH.
We highlight transparency and interaction as AI systems' affordances that present a wide range of trustworthiness cues to users.
We propose a checklist of requirements to help technology creators identify appropriate cues to use.
arXiv Detail & Related papers (2022-04-29T00:14:33Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
Many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc.
In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems.
To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems.
arXiv Detail & Related papers (2021-10-04T03:20:39Z) - Towards a Policy-as-a-Service Framework to Enable Compliant, Trustworthy
AI and HRI Systems in the Wild [7.225523345649149]
Building trustworthy autonomous systems is challenging for many reasons beyond simply trying to engineer agents that 'always do the right thing'
There is a broader context that is often not considered within AI and HRI: that the problem of trustworthiness is inherently socio-technical.
This paper emphasizes the "fuzzy" socio-technical aspects of trustworthiness and the need for their careful consideration during both design and deployment.
arXiv Detail & Related papers (2020-10-06T18:32:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.