Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
- URL: http://arxiv.org/abs/2502.21123v3
- Date: Fri, 21 Mar 2025 14:02:38 GMT
- Title: Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
- Authors: Ruta Binkyte, Ivaxi Sheth, Zhijing Jin, Mohammad Havaei, Bernhard Schölkopf, Mario Fritz,
- Abstract summary: This paper advocates integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML.<n>We argue that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models.
- Score: 91.24296813969003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring trustworthiness in machine learning (ML) systems is crucial as they become increasingly embedded in high-stakes domains. This paper advocates for integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML, including fairness, privacy, robustness, accuracy, and explainability. While these objectives should ideally be satisfied simultaneously, they are often addressed in isolation, leading to conflicts and suboptimal solutions. Drawing on existing applications of causality in ML that successfully align goals such as fairness and accuracy or privacy and robustness, this paper argues that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models. Beyond highlighting these trade-offs, we examine how causality can be practically integrated into ML and foundation models, offering solutions to enhance their reliability and interpretability. Finally, we discuss the challenges, limitations, and opportunities in adopting causal frameworks, paving the way for more accountable and ethically sound AI systems.
Related papers
- FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments [0.0]
We propose a framework that unifies federated learning with explainable multi-modal reasoning to ensure trustworthiness in decentralized, dynamic settings.
Our approach, called FedMM-X, leverages cross-modal consistency checks, client-level interpretability mechanisms, and dynamic trust calibration.
Our findings pave the way toward developing robust, interpretable, and socially responsible AI systems in Real-world environments.
arXiv Detail & Related papers (2025-03-25T11:28:21Z) - REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models [59.445672459851274]
REVAL is a comprehensive benchmark designed to evaluate the textbfREliability and textbfVALue of Large Vision-Language Models.
REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability and Values.
We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro.
arXiv Detail & Related papers (2025-03-20T07:54:35Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
Large language models (LLMs) frequently hallucinate due to misaligned self-awareness.
Existing approaches mitigate hallucinations via uncertainty estimation or query rejection.
We propose the Explicit Knowledge Boundary Modeling framework to integrate fast and slow reasoning systems.
arXiv Detail & Related papers (2025-03-04T03:16:02Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI)<n>This paper explores potential areas where statisticians can make important contributions to the development of LLMs.<n>We focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation.
arXiv Detail & Related papers (2025-02-25T03:40:36Z) - BeHonest: Benchmarking Honesty in Large Language Models [23.192389530727713]
We introduce BeHonest, a pioneering benchmark specifically designed to assess honesty in Large Language Models.
BeHonest evaluates three essential aspects of honesty: awareness of knowledge boundaries, avoidance of deceit, and consistency in responses.
Our findings indicate that there is still significant room for improvement in the honesty of LLMs.
arXiv Detail & Related papers (2024-06-19T06:46:59Z) - Test-Time Fairness and Robustness in Large Language Models [17.758735680493917]
Frontier Large Language Models (LLMs) can be socially discriminatory or sensitive to spurious features of their inputs.
Existing solutions, which instruct the LLM to be fair or robust, rely on the model's implicit understanding of bias.
We show that our prompting strategy, unlike implicit instructions, consistently reduces the bias of frontier LLMs.
arXiv Detail & Related papers (2024-06-11T20:05:15Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrust is the first comprehensive and unified benchmark on the trustworthiness of MLLMs.<n>Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts.<n>Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks.
arXiv Detail & Related papers (2024-06-11T08:38:13Z) - The Impossibility of Fair LLMs [59.424918263776284]
The need for fair AI is increasingly clear in the era of large language models (LLMs)
We review the technical frameworks that machine learning researchers have used to evaluate fairness.
We develop guidelines for the more realistic goal of achieving fairness in particular use cases.
arXiv Detail & Related papers (2024-05-28T04:36:15Z) - Securing Reliability: A Brief Overview on Enhancing In-Context Learning
for Foundation Models [10.889829033820433]
In-context learning (ICL) paradigm thrives but also encounters issues such as toxicity, hallucination, disparity, adversarial vulnerability, and inconsistency.
Ensuring the reliability and responsibility of foundation models (FMs) is crucial for the sustainable development of the AI ecosystem.
arXiv Detail & Related papers (2024-02-27T16:44:09Z) - TrustLLM: Trustworthiness in Large Language Models [446.5640421311468]
This paper introduces TrustLLM, a comprehensive study of trustworthiness in large language models (LLMs)
We first propose a set of principles for trustworthy LLMs that span eight different dimensions.
Based on these principles, we establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics.
arXiv Detail & Related papers (2024-01-10T22:07:21Z) - Robustness, Efficiency, or Privacy: Pick Two in Machine Learning [7.278033100480175]
This paper examines the costs associated with achieving privacy and robustness in distributed machine learning architectures.
Traditional noise injection hurts accuracy by concealing poisoned inputs, while cryptographic methods clash with poisoning defenses due to their non-linear nature.
We outline future research directions aimed at reconciling this compromise with efficiency by considering weaker threat models.
arXiv Detail & Related papers (2023-12-22T14:10:07Z) - Bridging the gap: Towards an Expanded Toolkit for AI-driven Decision-Making in the Public Sector [6.693502127460251]
AI-driven decision-making systems are becoming instrumental in the public sector, with applications spanning areas like criminal justice, social welfare, financial fraud detection, and public health.
These systems face the challenge of aligning machine learning (ML) models with the complex realities of public sector decision-making.
We examine five key challenges where misalignment can occur, including distribution shifts, label bias, the influence of past decision-making on the data side, as well as competing objectives and human-in-the-loop on the model output side.
arXiv Detail & Related papers (2023-10-29T17:44:48Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.