Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference
- URL: http://arxiv.org/abs/2407.13974v1
- Date: Fri, 19 Jul 2024 01:49:09 GMT
- Title: Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference
- Authors: Qian Liang, Yan Chen, Yang Hu,
- Abstract summary: Existing r measurement methods often overlook the incremental learning scenario.
Most existing class incremental learning approaches are unsuitable for r measurement.
We present a novel method named ADDP to tackle continual learning for r measurement.
- Score: 4.913049603343811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote photoplethysmography (rPPG) has gained significant attention in recent years for its ability to extract physiological signals from facial videos. While existing rPPG measurement methods have shown satisfactory performance in intra-dataset and cross-dataset scenarios, they often overlook the incremental learning scenario, where training data is presented sequentially, resulting in the issue of catastrophic forgetting. Meanwhile, most existing class incremental learning approaches are unsuitable for rPPG measurement. In this paper, we present a novel method named ADDP to tackle continual learning for rPPG measurement. We first employ adapter to efficiently finetune the model on new tasks. Then we design domain prototypes that are more applicable to rPPG signal regression than commonly used class prototypes. Based on these prototypes, we propose a feature augmentation strategy to consolidate the past knowledge and an inference simplification strategy to convert potentially forgotten tasks into familiar ones for the model. To evaluate ADDP and enable fair comparisons, we create the first continual learning protocol for rPPG measurement. Comprehensive experiments demonstrate the effectiveness of our method for rPPG continual learning. Source code is available at \url{https://github.com/MayYoY/rPPGDIL}
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - DD-rPPGNet: De-interfering and Descriptive Feature Learning for Unsupervised rPPG Estimation [8.901227918730562]
Photoplethysvolution (rmography) aims to measure physiological signals and Heart Rate (HR) from facial videos.
Recent unsupervised r estimation methods have shown promising potential in estimating r signals from facial regions without relying on ground truth r signals.
We propose a novel Deinterfered and Descriptive r Estimation Network (DD-rNet) to eliminate the interference within r features for learning genuine r signals.
arXiv Detail & Related papers (2024-07-31T07:43:58Z) - Fully Test-Time rPPG Estimation via Synthetic Signal-Guided Feature Learning [8.901227918730562]
TestTime Adaptation (TTA) enables the model to adaptively estimate r signals in various unseen domains by online adapting to unlabeled target data without referring to any source data.
We develop a synthetic signal-guided feature learning method by pseudo r signals as pseudo ground truths to guide a conditional generator in generating latent r features.
arXiv Detail & Related papers (2024-07-18T09:22:40Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
We propose a novel method to realize seamless adaptation of pre-trained models for visual place recognition (VPR)
Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method.
Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time.
arXiv Detail & Related papers (2024-02-22T12:55:01Z) - PhySU-Net: Long Temporal Context Transformer for rPPG with
Self-Supervised Pre-training [21.521146237660766]
We propose Phy-Net, the first long-temporal spatial map r transformer network and a self-supervised pre-training strategy.
Our model is tested on two public datasets (OBF and VIPL-HR) and shows superior performance in supervised training.
arXiv Detail & Related papers (2024-02-19T07:59:16Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - The Way to my Heart is through Contrastive Learning: Remote
Photoplethysmography from Unlabelled Video [10.479541955106328]
The ability to reliably estimate physiological signals from video is a powerful tool in low-cost, pre-clinical health monitoring.
We propose a new approach to remote photoplethysmography (r) - the measurement of blood volume changes from observations of a person's face or skin.
arXiv Detail & Related papers (2021-11-18T15:21:33Z) - STDP enhances learning by backpropagation in a spiking neural network [0.0]
The proposed method improves the accuracy without additional labeling when a small amount of labeled data is used.
It is possible to implement the proposed learning method for event-driven systems.
arXiv Detail & Related papers (2021-02-21T06:55:02Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.