DD-rPPGNet: De-interfering and Descriptive Feature Learning for Unsupervised rPPG Estimation
- URL: http://arxiv.org/abs/2407.21402v1
- Date: Wed, 31 Jul 2024 07:43:58 GMT
- Title: DD-rPPGNet: De-interfering and Descriptive Feature Learning for Unsupervised rPPG Estimation
- Authors: Pei-Kai Huang, Tzu-Hsien Chen, Ya-Ting Chan, Kuan-Wen Chen, Chiou-Ting Hsu,
- Abstract summary: Photoplethysvolution (rmography) aims to measure physiological signals and Heart Rate (HR) from facial videos.
Recent unsupervised r estimation methods have shown promising potential in estimating r signals from facial regions without relying on ground truth r signals.
We propose a novel Deinterfered and Descriptive r Estimation Network (DD-rNet) to eliminate the interference within r features for learning genuine r signals.
- Score: 8.901227918730562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote Photoplethysmography (rPPG) aims to measure physiological signals and Heart Rate (HR) from facial videos. Recent unsupervised rPPG estimation methods have shown promising potential in estimating rPPG signals from facial regions without relying on ground truth rPPG signals. However, these methods seem oblivious to interference existing in rPPG signals and still result in unsatisfactory performance. In this paper, we propose a novel De-interfered and Descriptive rPPG Estimation Network (DD-rPPGNet) to eliminate the interference within rPPG features for learning genuine rPPG signals. First, we investigate the characteristics of local spatial-temporal similarities of interference and design a novel unsupervised model to estimate the interference. Next, we propose an unsupervised de-interfered method to learn genuine rPPG signals with two stages. In the first stage, we estimate the initial rPPG signals by contrastive learning from both the training data and their augmented counterparts. In the second stage, we use the estimated interference features to derive de-interfered rPPG features and encourage the rPPG signals to be distinct from the interference. In addition, we propose an effective descriptive rPPG feature learning by developing a strong 3D Learnable Descriptive Convolution (3DLDC) to capture the subtle chrominance changes for enhancing rPPG estimation. Extensive experiments conducted on five rPPG benchmark datasets demonstrate that the proposed DD-rPPGNet outperforms previous unsupervised rPPG estimation methods and achieves competitive performances with state-of-the-art supervised rPPG methods.
Related papers
- Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference [4.913049603343811]
Existing r measurement methods often overlook the incremental learning scenario.
Most existing class incremental learning approaches are unsuitable for r measurement.
We present a novel method named ADDP to tackle continual learning for r measurement.
arXiv Detail & Related papers (2024-07-19T01:49:09Z) - Fully Test-Time rPPG Estimation via Synthetic Signal-Guided Feature Learning [8.901227918730562]
TestTime Adaptation (TTA) enables the model to adaptively estimate r signals in various unseen domains by online adapting to unlabeled target data without referring to any source data.
We develop a synthetic signal-guided feature learning method by pseudo r signals as pseudo ground truths to guide a conditional generator in generating latent r features.
arXiv Detail & Related papers (2024-07-18T09:22:40Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
We argue that the performance of the final classifier depends on the data separation present in the latent space and visual separation present in the projection.
We demonstrate our results by the classification of five real-world challenging image datasets of human intestinal parasites with only 1% supervised samples.
arXiv Detail & Related papers (2023-02-06T10:01:38Z) - Benchmarking Joint Face Spoofing and Forgery Detection with Visual and
Physiological Cues [81.15465149555864]
We establish the first joint face spoofing and detection benchmark using both visual appearance and physiological r cues.
To enhance the r periodicity discrimination, we design a two-branch physiological network using both facial powerful rtemporal signal map and its continuous wavelet transformed counterpart as inputs.
arXiv Detail & Related papers (2022-08-10T15:41:48Z) - WPPG Net: A Non-contact Video Based Heart Rate Extraction Network
Framework with Compatible Training Capability [21.33542693986985]
Our facial skin presents subtle color change known as remote Photoplethys (r) signal, from which we could extract the heart rate of the subject.
Recently many deep learning methods and related datasets on r signal extraction are proposed.
However, because of the time consumption blood flowing through our body and other factors, label waves such as BVP signals have uncertain delays with real r signals in some datasets.
In this paper, by analyzing the common characteristics on rhythm and periodicity of r signals and label waves, we propose a whole set of training methodology which wraps these networks so that they could remain efficient when be trained at
arXiv Detail & Related papers (2022-07-04T19:52:30Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
We propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals.
With insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework.
arXiv Detail & Related papers (2022-07-04T04:57:06Z) - Face2PPG: An unsupervised pipeline for blood volume pulse extraction
from faces [0.456877715768796]
Photoplethys signals have become a key technology in many fields, such as medicine, well-being, or sports.
Our work proposes a set of pipelines to extract PPG signals from the face robustly, reliably, and robustness.
arXiv Detail & Related papers (2022-02-08T19:06:20Z) - Consistency Regularization for Deep Face Anti-Spoofing [69.70647782777051]
Face anti-spoofing (FAS) plays a crucial role in securing face recognition systems.
Motivated by this exciting observation, we conjecture that encouraging feature consistency of different views may be a promising way to boost FAS models.
We enhance both Embedding-level and Prediction-level Consistency Regularization (EPCR) in FAS.
arXiv Detail & Related papers (2021-11-24T08:03:48Z) - An Adversarial Human Pose Estimation Network Injected with Graph
Structure [75.08618278188209]
In this paper, we design a novel generative adversarial network (GAN) to improve the localization accuracy of visible joints when some joints are invisible.
The network consists of two simple but efficient modules, Cascade Feature Network (CFN) and Graph Structure Network (GSN)
arXiv Detail & Related papers (2021-03-29T12:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.