論文の概要: Component Selection for Craft Assembly Tasks
- arxiv url: http://arxiv.org/abs/2407.14001v2
- Date: Fri, 16 Aug 2024 01:27:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 17:59:12.090682
- Title: Component Selection for Craft Assembly Tasks
- Title(参考訳): クラフトアセンブリタスクのためのコンポーネント選択
- Authors: Vitor Hideyo Isume, Takuya Kiyokawa, Natsuki Yamanobe, Yukiyasu Domae, Weiwei Wan, Kensuke Harada,
- Abstract要約: Craft Assembly Taskは、特定のターゲットオブジェクトの正確な表現を構築することを含む、ロボットアセンブリタスクである。
本研究は,対象物のRGB画像が野生である場合に,最終工芸品の利用可能なオブジェクトのサブセットを選択することに焦点を当てる。
我々は,すべての組み合わせを考慮に入れた比較のためのベースラインを開発し,前景地図やマスク精度で使用される共通指標の最高スコアの組み合わせを選択する。
- 参考スコア(独自算出の注目度): 15.060298659447348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by traditional handmade crafts, where a person improvises assemblies based on the available objects, we formally introduce the Craft Assembly Task. It is a robotic assembly task that involves building an accurate representation of a given target object using the available objects, which do not directly correspond to its parts. In this work, we focus on selecting the subset of available objects for the final craft, when the given input is an RGB image of the target in the wild. We use a mask segmentation neural network to identify visible parts, followed by retrieving labelled template meshes. These meshes undergo pose optimization to determine the most suitable template. Then, we propose to simplify the parts of the transformed template mesh to primitive shapes like cuboids or cylinders. Finally, we design a search algorithm to find correspondences in the scene based on local and global proportions. We develop baselines for comparison that consider all possible combinations, and choose the highest scoring combination for common metrics used in foreground maps and mask accuracy. Our approach achieves comparable results to the baselines for two different scenes, and we show qualitative results for an implementation in a real-world scenario.
- Abstract(参考訳): 従来の手作り工芸品にインスパイアされ、利用可能なオブジェクトに基づいてアセンブリを即興で行うことで、クラフトアセンブリータスクを正式に導入する。
ロボット組立作業であり、使用可能なオブジェクトを使用して、そのパーツに直接対応しない所定の対象オブジェクトの正確な表現を構築する。
本研究は,対象物のRGB画像が野生である場合に,最終工芸品の利用可能なオブジェクトのサブセットを選択することに焦点を当てる。
マスクセグメンテーションニューラルネットワークを用いて、目に見える部分を特定し、ラベル付きテンプレートメッシュを検索する。
これらのメッシュは、最も適切なテンプレートを決定するために最適化される。
そこで本研究では,テンプレートメッシュの一部をキュービドやシリンダーなどの原始的な形状に簡略化することを提案する。
最後に,ローカルとグローバルの比率に基づいて,シーン内の対応関係を見つけるための探索アルゴリズムを設計する。
我々は,すべての組み合わせを考慮に入れた比較のためのベースラインを開発し,前景地図やマスク精度で使用される共通指標の最高スコアの組み合わせを選択する。
提案手法は2つの異なるシーンのベースラインに匹敵する結果を達成し,実世界のシナリオにおける実装の質的な結果を示す。
関連論文リスト
- LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
本稿では, 乱れ場面におけるロボットグルーピングのためのアモーダルセグメンテーションを探求する枠組みを提案する。
線形融合注意誘導畳み込みネットワーク(LAC-Net)を提案する。
その結果,本手法が最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-06T14:50:48Z) - TopNet: Transformer-based Object Placement Network for Image Compositing [43.14411954867784]
背景画像の局所的な手がかりは、特定の位置/スケールにオブジェクトを置くことの互換性を決定するために重要である。
本稿では,トランスモジュールを用いてオブジェクト特徴とすべてのローカル背景特徴の相関関係を学習することを提案する。
我々の新しい定式化は、1つのネットワークフォワードパスにおけるすべての位置/スケールの組み合わせの妥当性を示す3Dヒートマップを生成する。
論文 参考訳(メタデータ) (2023-04-06T20:58:49Z) - SE(3)-Equivariant Relational Rearrangement with Neural Descriptor Fields [39.562247503513156]
本稿では,任意のポーズで新規オブジェクトインスタンス間の空間的関係を含むタスクを実行する手法を提案する。
私たちのフレームワークは、5-10のデモだけで新しいタスクを指定できるスケーラブルな方法を提供する。
本手法は,シミュレーションにおける3つのマルチオブジェクト再構成タスクと実ロボットを用いて試験を行う。
論文 参考訳(メタデータ) (2022-11-17T18:55:42Z) - Complex Scene Image Editing by Scene Graph Comprehension [17.72638225034884]
シーングラフ(SGC-Net)による複雑なシーン画像編集を実現するための2段階手法を提案する。
第1段階では,シーングラフを用いた関心領域予測ネットワークを訓練し,対象物体の位置を推定する。
第2段階では条件付き拡散モデルを用いて、RoI予測に基づいて画像を編集する。
論文 参考訳(メタデータ) (2022-03-24T05:12:54Z) - 3D Compositional Zero-shot Learning with DeCompositional Consensus [102.7571947144639]
我々は、部分的知識は観察されたオブジェクトクラスを超えて構成可能であるべきだと論じる。
本稿では、視覚から見えないオブジェクトクラスへの部分一般化の問題として、3D合成ゼロショット学習を提案する。
論文 参考訳(メタデータ) (2021-11-29T16:34:53Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - RICE: Refining Instance Masks in Cluttered Environments with Graph
Neural Networks [53.15260967235835]
本稿では,インスタンスマスクのグラフベース表現を利用して,そのような手法の出力を改良する新しいフレームワークを提案する。
我々は、セグメンテーションにスマートな摂動をサンプリングできるディープネットワークと、オブジェクト間の関係をエンコード可能なグラフニューラルネットワークを訓練し、セグメンテーションを評価する。
本稿では,本手法によって生成された不確実性推定を用いてマニピュレータを誘導し,乱れたシーンを効率的に理解するアプリケーションについて紹介する。
論文 参考訳(メタデータ) (2021-06-29T20:29:29Z) - Compositional Sketch Search [91.84489055347585]
フリーハンドスケッチを用いて画像コレクションを検索するアルゴリズムを提案する。
シーン構成全体を特定するための簡潔で直感的な表現として描画を利用する。
論文 参考訳(メタデータ) (2021-06-15T09:38:09Z) - Localization and Mapping using Instance-specific Mesh Models [12.235379548921061]
本論文では,モノラルカメラを用いて,物体のポーズや形状を含むセマンティックマップの構築に焦点を当てる。
私たちの貢献は,カメラ画像から抽出した意味情報に基づいてオンラインに最適化可能な,オブジェクト形状のインスタンス固有メッシュモデルである。
論文 参考訳(メタデータ) (2021-03-08T00:24:23Z) - AutoSweep: Recovering 3D Editable Objectsfrom a Single Photograph [54.701098964773756]
セマンティックな部分で3Dオブジェクトを復元し、直接編集することを目的としている。
我々の研究は、一般化された立方体と一般化されたシリンダーという、2種類の原始的な形状の物体を回収する試みである。
提案アルゴリズムは,高品質な3Dモデルを復元し,既存手法のインスタンスセグメンテーションと3D再構成の両方で性能を向上する。
論文 参考訳(メタデータ) (2020-05-27T12:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。