論文の概要: PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training
- arxiv url: http://arxiv.org/abs/2407.14054v1
- Date: Fri, 19 Jul 2024 06:29:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:43:32.355491
- Title: PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training
- Title(参考訳): PointRegGPT: 学習用ジェネレーティブポイントクラウドペアによる3Dポイントクラウド登録の促進
- Authors: Suyi Chen, Hao Xu, Haipeng Li, Kunming Luo, Guanghui Liu, Chi-Wing Fu, Ping Tan, Shuaicheng Liu,
- Abstract要約: 生成点クラウドペアを用いた3Dポイントクラウドの登録をトレーニングのために促進するPointRegGPTを提案する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
- 参考スコア(独自算出の注目度): 90.06520673092702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data plays a crucial role in training learning-based methods for 3D point cloud registration. However, the real-world dataset is expensive to build, while rendering-based synthetic data suffers from domain gaps. In this work, we present PointRegGPT, boosting 3D point cloud registration using generative point-cloud pairs for training. Given a single depth map, we first apply a random camera motion to re-project it into a target depth map. Converting them to point clouds gives a training pair. To enhance the data realism, we formulate a generative model as a depth inpainting diffusion to process the target depth map with the re-projected source depth map as the condition. Also, we design a depth correction module to alleviate artifacts caused by point penetration during the re-projection. To our knowledge, this is the first generative approach that explores realistic data generation for indoor point cloud registration. When equipped with our approach, several recent algorithms can improve their performance significantly and achieve SOTA consistently on two common benchmarks. The code and dataset will be released on https://github.com/Chen-Suyi/PointRegGPT.
- Abstract(参考訳): データは3Dポイントクラウド登録のための学習ベースのメソッドのトレーニングにおいて重要な役割を果たす。
しかし、実際のデータセットの構築にはコストがかかり、レンダリングベースの合成データはドメインギャップに悩まされる。
本稿では,3Dポイントクラウドの登録を3Dポイントクラウドペアで促進するPointRegGPTを提案する。
1つの深度マップが与えられた場合、まずランダムなカメラの動きを適用してターゲットの深度マップに再投影する。
ポイントクラウドに変換することで、トレーニングペアが提供される。
データリアリズムを高めるために、生成モデルを拡散に影響を及ぼす深さとして定式化し、ターゲット深度マップと再投影した震源深度マップを条件として処理する。
また、再投射時の点透過によるアーティファクトを緩和する深度補正モジュールを設計する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
提案手法を適用すれば,最近のアルゴリズムにより性能が大幅に向上し,2つの共通ベンチマーク上で一貫したSOTAを実現することができる。
コードとデータセットはhttps://github.com/Chen-Suyi/PointRegGPTでリリースされる。
関連論文リスト
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
私たちは、Diffusion Schr"odingerブリッジをポイントクラウドに適応させる新しいフレームワークを通じて、ポイントクラウドを飾るタスクに取り組みます。
オブジェクトデータセットの実験では、P2P-Bridgeは既存のメソッドよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-08-29T08:00:07Z) - Zero-Shot Point Cloud Registration [94.39796531154303]
ZeroRegは、ポイントクラウドデータセットのトレーニングを不要にする最初のゼロショットポイントクラウド登録アプローチである。
ZeroRegの基盤は、キーポイントからポイントクラウドへの画像特徴の新たな移行であり、三次元幾何学的近傍からの情報を集約することによって強化されている。
3DMatch、3DLoMatch、ScanNetなどのベンチマークでは、ZeroRegはそれぞれ84%、46%、75%という印象的なリコール比(RR)を達成した。
論文 参考訳(メタデータ) (2023-12-05T11:33:16Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
データ拡張は、ディープラーニングタスクのパフォーマンスを向上させるための強力なテクニックである。
本研究は,3次元点雲に対するTTA(Test-time augmentation)について検討する。
論文 参考訳(メタデータ) (2023-11-22T04:31:09Z) - Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning
for Object Classification in 3D Point Clouds [14.056949618464394]
LiDAR 3Dポイントクラウドデータを用いたオブジェクト分類は、自律運転のような現代的なアプリケーションにとって重要である。
本稿では,ポイントクラウドのマニュアルアノテーションに依存しない半教師付きクロスドメイン学習手法を提案する。
我々は、ポイントクラウド上でのクロスドメイン学習のための新しいベンチマークデータセットであるPoint-Syn2Realを紹介した。
論文 参考訳(メタデータ) (2022-10-31T01:53:51Z) - Self-Supervised Learning with Multi-View Rendering for 3D Point Cloud
Analysis [33.31864436614945]
本稿では,3次元点雲モデルのための新しい事前学習手法を提案する。
我々の事前訓練は、局所的なピクセル/ポイントレベルの対応損失と、大域的な画像/ポイントの雲のレベル損失によって自己管理される。
これらの改善されたモデルは、さまざまなデータセットや下流タスクにおける既存の最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2022-10-28T05:23:03Z) - RCP: Recurrent Closest Point for Scene Flow Estimation on 3D Point
Clouds [44.034836961967144]
シーンフローや点雲の登録を含む3次元運動推定が注目されている。
最近の手法では、正確な3次元フローを推定するためのコストボリュームを構築するために、ディープニューラルネットワークを使用している。
問題を2つのインターレースステージに分解し、第1段階では3次元フローをポイントワイズに最適化し、第2段階ではリカレントネットワークでグローバルに正規化する。
論文 参考訳(メタデータ) (2022-05-23T04:04:30Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
実スキャンされた3Dポイントクラウドはしばしば不完全であり、下流アプリケーションのために完全なポイントクラウドを復元することが重要である。
ほとんどの既存のポイントクラウド補完方法は、トレーニングにチャンファー距離(CD)損失を使用する。
本稿では,点雲完了のためのPDR(Point Diffusion-Refinement)パラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-07T06:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。