PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training
- URL: http://arxiv.org/abs/2407.14054v1
- Date: Fri, 19 Jul 2024 06:29:57 GMT
- Title: PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training
- Authors: Suyi Chen, Hao Xu, Haipeng Li, Kunming Luo, Guanghui Liu, Chi-Wing Fu, Ping Tan, Shuaicheng Liu,
- Abstract summary: We present PointRegGPT, boosting 3D point cloud registration using generative point-cloud pairs for training.
To our knowledge, this is the first generative approach that explores realistic data generation for indoor point cloud registration.
- Score: 90.06520673092702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data plays a crucial role in training learning-based methods for 3D point cloud registration. However, the real-world dataset is expensive to build, while rendering-based synthetic data suffers from domain gaps. In this work, we present PointRegGPT, boosting 3D point cloud registration using generative point-cloud pairs for training. Given a single depth map, we first apply a random camera motion to re-project it into a target depth map. Converting them to point clouds gives a training pair. To enhance the data realism, we formulate a generative model as a depth inpainting diffusion to process the target depth map with the re-projected source depth map as the condition. Also, we design a depth correction module to alleviate artifacts caused by point penetration during the re-projection. To our knowledge, this is the first generative approach that explores realistic data generation for indoor point cloud registration. When equipped with our approach, several recent algorithms can improve their performance significantly and achieve SOTA consistently on two common benchmarks. The code and dataset will be released on https://github.com/Chen-Suyi/PointRegGPT.
Related papers
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - Zero-Shot Point Cloud Registration [94.39796531154303]
ZeroReg is the first zero-shot point cloud registration approach that eliminates the need for training on point cloud datasets.
The cornerstone of ZeroReg is the novel transfer of image features from keypoints to the point cloud, enriched by aggregating information from 3D geometric neighborhoods.
On benchmarks such as 3DMatch, 3DLoMatch, and ScanNet, ZeroReg achieves impressive Recall Ratios (RR) of over 84%, 46%, and 75%, respectively.
arXiv Detail & Related papers (2023-12-05T11:33:16Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
Data augmentation is a powerful technique to enhance the performance of a deep learning task.
This work explores test-time augmentation (TTA) for 3D point clouds.
arXiv Detail & Related papers (2023-11-22T04:31:09Z) - Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning
for Object Classification in 3D Point Clouds [14.056949618464394]
Object classification using LiDAR 3D point cloud data is critical for modern applications such as autonomous driving.
We propose a semi-supervised cross-domain learning approach that does not rely on manual annotations of point clouds.
We introduce Point-Syn2Real, a new benchmark dataset for cross-domain learning on point clouds.
arXiv Detail & Related papers (2022-10-31T01:53:51Z) - Self-Supervised Learning with Multi-View Rendering for 3D Point Cloud
Analysis [33.31864436614945]
We propose a novel pre-training method for 3D point cloud models.
Our pre-training is self-supervised by a local pixel/point level correspondence loss and a global image/point cloud level loss.
These improved models outperform existing state-of-the-art methods on various datasets and downstream tasks.
arXiv Detail & Related papers (2022-10-28T05:23:03Z) - RCP: Recurrent Closest Point for Scene Flow Estimation on 3D Point
Clouds [44.034836961967144]
3D motion estimation including scene flow and point cloud registration has drawn increasing interest.
Recent methods employ deep neural networks to construct the cost volume for estimating accurate 3D flow.
We decompose the problem into two interlaced stages, where the 3D flows are optimized point-wisely at the first stage and then globally regularized in a recurrent network at the second stage.
arXiv Detail & Related papers (2022-05-23T04:04:30Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
Real-scanned 3D point clouds are often incomplete, and it is important to recover complete point clouds for downstream applications.
Most existing point cloud completion methods use Chamfer Distance (CD) loss for training.
We propose a novel Point Diffusion-Refinement (PDR) paradigm for point cloud completion.
arXiv Detail & Related papers (2021-12-07T06:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.