論文の概要: MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction
- arxiv url: http://arxiv.org/abs/2407.14065v1
- Date: Fri, 19 Jul 2024 06:42:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:33:40.780863
- Title: MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction
- Title(参考訳): MSCT:Murginal Structure Causal Transformer による事故後交通予測のための時間変化対応
- Authors: Shuang Li, Ziyuan Pu, Nan Zhang, Duxin Chen, Lu Dong, Daniel J. Graham, Yinhai Wang,
- Abstract要約: 本稿では,ポストクラッシュ交通予測のための新しい深層学習モデルを提案する。
提案モデルでは, 仮説的衝突介入戦略の下での交通速度の理解と予測に特化して, 処理を意識したモデルを提案する。
このモデルは、合成データと実世界のデータの両方を用いて検証され、MSCTがマルチステップ・アヘッド予測性能において最先端モデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 24.3907895281179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic crashes profoundly impede traffic efficiency and pose economic challenges. Accurate prediction of post-crash traffic status provides essential information for evaluating traffic perturbations and developing effective solutions. Previous studies have established a series of deep learning models to predict post-crash traffic conditions, however, these correlation-based methods cannot accommodate the biases caused by time-varying confounders and the heterogeneous effects of crashes. The post-crash traffic prediction model needs to estimate the counterfactual traffic speed response to hypothetical crashes under various conditions, which demonstrates the necessity of understanding the causal relationship between traffic factors. Therefore, this paper presents the Marginal Structural Causal Transformer (MSCT), a novel deep learning model designed for counterfactual post-crash traffic prediction. To address the issue of time-varying confounding bias, MSCT incorporates a structure inspired by Marginal Structural Models and introduces a balanced loss function to facilitate learning of invariant causal features. The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies. In the absence of ground-truth data, a synthetic data generation procedure is proposed to emulate the causal mechanism between traffic speed, crashes, and covariates. The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance. This study also systematically analyzes the impact of time-varying confounding bias and dataset distribution on model performance, contributing valuable insights into counterfactual prediction for intelligent transportation systems.
- Abstract(参考訳): 交通事故は交通効率を著しく損ない、経済的課題を引き起こす。
事故後の交通状況の正確な予測は、交通摂動の評価と効果的なソリューションの開発に不可欠な情報を提供する。
これまでの研究では、交通状況を予測するための一連のディープラーニングモデルが確立されてきたが、これらの相関に基づく手法は、時間変化のある共同設立者によるバイアスと、クラッシュの異質な影響に適応できない。
事故後の交通予測モデルでは, 交通要因間の因果関係の理解の必要性を実証するために, 様々な条件下での仮説的事故に対する交通速度応答を推定する必要がある。
そこで本論文では,非現実的なトラフィック予測を目的とした新しい深層学習モデルであるMarginal Structure Causal Transformer (MSCT)を提案する。
時間的差分バイアスの問題に対処するため、MSCTはMarginal Structure Modelsにインスパイアされた構造を導入し、不変因果的特徴の学習を容易にするバランスの取れた損失関数を導入した。
提案モデルでは, 仮説的衝突介入戦略の下での交通速度の理解と予測に特化して, 処理を意識したモデルを提案する。
地上構造データがない場合には, 交通速度, 衝突, 共変量間の因果関係をエミュレートする合成データ生成手法が提案される。
このモデルは、合成データと実世界のデータの両方を用いて検証され、MSCTがマルチステップ・アヘッド予測性能において最先端モデルより優れていることを示す。
本研究は, 時間変化の共起バイアスとデータセット分布がモデル性能に与える影響を系統的に分析し, インテリジェント交通システムに対する対実予測に有意な洞察をもたらした。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
本稿では,駅間の移動時間をグラフニューラルネットワークアーキテクチャの重み付き隣接行列に組み込む新しい枠組みを提案する。
不確実性に対処するために、リアルタイムの検証残差に基づいて予測間隔を調整するAdaptive Conformal Prediction (ACP) 手法を用いる。
実験の結果,提案モデルでは,MAEが約24%,RMSEが8%,次世代モデルが約24%向上した。
論文 参考訳(メタデータ) (2024-07-17T01:11:07Z) - ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction [47.17205142864036]
ICST-DENTはSpatio-Temporal Causality Learning (STCL)、Causal Graph Generation (CGG)、Speed Fluctuation Pattern Recognition (SFPR)の3つの部分から構成されている。
ICST-DENTは、より高い予測精度、因果関係を説明する能力、異なるシナリオへの適応性によって証明されているように、既存のすべてのベースラインを上回ることができる。
論文 参考訳(メタデータ) (2024-04-22T03:35:19Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - Causal conditional hidden Markov model for multimodal traffic prediction [2.991894112851257]
マルチモーダルトラフィックフローを予測するために,Causal Hidden Markov Model (CCHMM)を提案する。
実世界のデータセットの実験により、CCHMMは興味ある概念の因果表現を効果的に切り離すことができることが示された。
論文 参考訳(メタデータ) (2023-01-19T01:56:43Z) - Spatio-temporal neural structural causal models for bike flow prediction [2.991894112851257]
自転車シェアリングシステムの基本的な問題は、自転車のフロー予測である。
近年の輸送システムにおける文脈条件の過度な強調手法が注目されている。
時空間構造因果モデルを提案する。
論文 参考訳(メタデータ) (2023-01-19T01:39:21Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。