People use fast, goal-directed simulation to reason about novel games
- URL: http://arxiv.org/abs/2407.14095v1
- Date: Fri, 19 Jul 2024 07:59:04 GMT
- Title: People use fast, goal-directed simulation to reason about novel games
- Authors: Cedegao E. Zhang, Katherine M. Collins, Lionel Wong, Adrian Weller, Joshua B. Tenenbaum,
- Abstract summary: We study how people reason about a range of simple but novel connect-n style board games.
We ask people to judge how fair and how fun the games are from very little experience.
- Score: 75.25089384921557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We can evaluate features of problems and their potential solutions well before we can effectively solve them. When considering a game we have never played, for instance, we might infer whether it is likely to be challenging, fair, or fun simply from hearing the game rules, prior to deciding whether to invest time in learning the game or trying to play it well. Many studies of game play have focused on optimality and expertise, characterizing how people and computational models play based on moderate to extensive search and after playing a game dozens (if not thousands or millions) of times. Here, we study how people reason about a range of simple but novel connect-n style board games. We ask people to judge how fair and how fun the games are from very little experience: just thinking about the game for a minute or so, before they have ever actually played with anyone else, and we propose a resource-limited model that captures their judgments using only a small number of partial game simulations and almost no lookahead search.
Related papers
- Learning to Play Video Games with Intuitive Physics Priors [2.1548132286330453]
We design object-based input representations that generalize well across a number of video games.
Using these representations, we evaluate an agent's ability to learn games similar to an infant.
Our results suggest that a human-like object interaction setup capably learns to play several video games.
arXiv Detail & Related papers (2024-09-20T20:30:27Z) - Imperfect-Recall Games: Equilibrium Concepts and Their Complexity [74.01381499760288]
We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before.
In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings.
arXiv Detail & Related papers (2024-06-23T00:27:28Z) - Game Solving with Online Fine-Tuning [17.614045403579244]
This paper investigates applying online fine-tuning while searching and proposes two methods to learn tailor-designed computations for game solving.
Our experiments show that using online fine-tuning can solve a series of challenging 7x7 Killall-Go problems, using only 23.54% of time compared to the baseline.
arXiv Detail & Related papers (2023-11-13T09:09:52Z) - Know your Enemy: Investigating Monte-Carlo Tree Search with Opponent
Models in Pommerman [14.668309037894586]
In combination with Reinforcement Learning, Monte-Carlo Tree Search has shown to outperform human grandmasters in games such as Chess, Shogi and Go.
We investigate techniques that transform general-sum multiplayer games into single-player and two-player games.
arXiv Detail & Related papers (2023-05-22T16:39:20Z) - An AlphaZero-Inspired Approach to Solving Search Problems [63.24965775030674]
We adapt the methods and techniques used in AlphaZero for solving search problems.
We describe possible representations in terms of easy-instance solvers and self-reductions.
We also describe a version of Monte Carlo tree search adapted for search problems.
arXiv Detail & Related papers (2022-07-02T23:39:45Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - Inducing game rules from varying quality game play [0.0]
General Game Playing (GGP) is a framework in which an artificial intelligence program is required to play a variety of games successfully.
IGGP is the problem of inducing general game rules from specific game observations.
We use Sancho, the 2014 GGP competition winner, to generate intelligent game traces for a large number of games.
We then use the ILP systems, Metagol, Aleph and ILASP to induce game rules from the traces.
arXiv Detail & Related papers (2020-08-04T15:46:57Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay.
During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well.
Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly.
arXiv Detail & Related papers (2020-02-24T20:30:38Z) - Conceptual Game Expansion [10.647788986944994]
We learn representations of existing games from gameplay video and use these to approximate a search space of novel games.
In a human subject study we demonstrate that these novel games are indistinguishable from human games in terms of challenge.
arXiv Detail & Related papers (2020-02-22T05:51:54Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
This work presents an exploration and imitation-learning-based agent capable of state-of-the-art performance in playing text-based computer games.
Text-based computer games describe their world to the player through natural language and expect the player to interact with the game using text.
These games are of interest as they can be seen as a testbed for language understanding, problem-solving, and language generation by artificial agents.
arXiv Detail & Related papers (2020-01-24T03:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.