論文の概要: Rethinking Visual Content Refinement in Low-Shot CLIP Adaptation
- arxiv url: http://arxiv.org/abs/2407.14117v1
- Date: Fri, 19 Jul 2024 08:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:13:50.069748
- Title: Rethinking Visual Content Refinement in Low-Shot CLIP Adaptation
- Title(参考訳): ローショットCLIP適応における視覚的コンテンツリファインメントの再考
- Authors: Jinda Lu, Shuo Wang, Yanbin Hao, Haifeng Liu, Xiang Wang, Meng Wang,
- Abstract要約: 近年の適応は、コントラストビジョン・ランゲージ事前訓練の低ショット能力を高めることができる。
本稿では,テスト段階の適応計算に先立って,視覚的コンテンツリファインメント(VCR)を提案する。
提案手法を,13のデータセットを持つ3つの一般的なローショットベンチマークタスクに適用し,最先端の手法よりも大幅に改善した。
- 参考スコア(独自算出の注目度): 31.023236232633213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent adaptations can boost the low-shot capability of Contrastive Vision-Language Pre-training (CLIP) by effectively facilitating knowledge transfer. However, these adaptation methods are usually operated on the global view of an input image, and thus biased perception of partial local details of the image. To solve this problem, we propose a Visual Content Refinement (VCR) before the adaptation calculation during the test stage. Specifically, we first decompose the test image into different scales to shift the feature extractor's attention to the details of the image. Then, we select the image view with the max prediction margin in each scale to filter out the noisy image views, where the prediction margins are calculated from the pre-trained CLIP model. Finally, we merge the content of the aforementioned selected image views based on their scales to construct a new robust representation. Thus, the merged content can be directly used to help the adapter focus on both global and local parts without any extra training parameters. We apply our method to 3 popular low-shot benchmark tasks with 13 datasets and achieve a significant improvement over state-of-the-art methods. For example, compared to the baseline (Tip-Adapter) on the few-shot classification task, our method achieves about 2\% average improvement for both training-free and training-need settings.
- Abstract(参考訳): 近年の適応は、知識伝達を効果的に促進することにより、CLIP(Contrastive Vision-Language Pre-Training)の低ショット能力を高めることができる。
しかしながら、これらの適応法は通常、入力画像のグローバルなビューに基づいて動作し、画像の部分的な局所的な詳細の知覚に偏りが生じる。
そこで本研究では,テスト段階の適応計算に先立って,視覚的コンテンツリファインメント(VCR)を提案する。
具体的には、まずテスト画像を異なるスケールに分解し、特徴抽出器の注意を画像の詳細にシフトさせる。
次に、各スケールで最大予測マージンで画像ビューを選択し、ノイズの多い画像ビューをフィルタリングし、事前学習されたCLIPモデルから予測マージンを算出する。
最後に、上述した画像ビューの内容をそのスケールに基づいてマージし、新しいロバストな表現を構築する。
したがって、マージされたコンテンツは、追加のトレーニングパラメータなしで、アダプタがグローバル部分とローカル部分の両方にフォーカスするのに役立つ。
提案手法を,13のデータセットを用いた3つの一般的なローショットベンチマークタスクに適用し,最先端の手法よりも大幅に改善した。
例えば、少数ショット分類タスクのベースライン(Tip-Adapter)と比較して、トレーニング不要設定とトレーニング不要設定の両方で平均26%の改善が達成される。
関連論文リスト
- CLIP Adaptation by Intra-modal Overlap Reduction [1.2277343096128712]
画像空間におけるモーダル内重なりを埋め込み表現の観点から解析する。
Google Open Imagesデータセットからサンプルのジェネリックセットに軽量アダプタをトレーニングします。
論文 参考訳(メタデータ) (2024-09-17T16:40:58Z) - Semantic Compositions Enhance Vision-Language Contrastive Learning [46.985865191341944]
CLIPのようなモデルのゼロショット分類と検索能力は、事前学習中に意味論的に複合的な例を導入することで大幅に向上できることを示す。
本手法はキャプションを融合させ,各画像の50%をブレンドして新しい複合試料を作成する。
CLIP-Cの利点は、特に比較的限られた事前学習データを持つ設定で顕著である。
論文 参考訳(メタデータ) (2024-07-01T15:58:20Z) - CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition [73.51329037954866]
視覚的位置認識のための画像間相関認識を用いたロバストなグローバル表現手法を提案する。
本手法では,バッチ内の複数の画像の相関にアテンション機構を用いる。
本手法は,訓練時間を大幅に短縮し,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-29T15:05:11Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
視覚的位置認識のための事前学習モデル(VPR)のシームレスな適応を実現する新しい手法を提案する。
具体的には、地域を識別するための有意義なランドマークに焦点を当てたグローバルな特徴とローカルな特徴の両方を得るために、ハイブリッド適応法を設計する。
実験結果から,本手法はトレーニングデータやトレーニング時間が少なく,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-02-22T12:55:01Z) - Meta-Adapter: An Online Few-shot Learner for Vision-Language Model [64.21017759533474]
CLIPとして知られる対照的な視覚言語事前学習は、オープンワールドの視覚概念を知覚する大きな可能性を実証している。
CLIPに基づくほとんどショットの学習方法は、通常、少数のサンプルでパラメータをオフラインで微調整する必要がある。
少数のサンプルから導かれるCLIP機能をオンライン的に洗練するための,軽量な残差型アダプタであるMeta-Adapterを提案する。
論文 参考訳(メタデータ) (2023-11-07T07:27:16Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
本稿では、事前学習された視覚言語モデル(例えば、CLIP)を利用して、さらなる適応を可能にするアプローチを提案する。
いくつかの従来のベンチマークの実験は、常に現在の最先端よりも顕著な改善のマージンを示している。
論文 参考訳(メタデータ) (2023-10-31T10:45:03Z) - ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations [43.323791505213634]
ASPIRE (Language-guided Data Augmentation for SPurious correlation Removal) は、スプリアスな特徴のない画像でトレーニングデータセットを補完するソリューションである。
トレーニングセットにグループラベルや既存の非スパースイメージを必要とせずに、非スパース画像を生成することができる。
先行手法の最悪のグループ分類精度を1%から38%向上させる。
論文 参考訳(メタデータ) (2023-08-19T20:18:15Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot画像分類は、大規模なデータセットから学んだ事前学習された知識を利用して、一連の下流分類タスクに取り組むことを目的としている。
本研究では,Few-Shot LearningフレームワークであるCOSOCを提案する。
論文 参考訳(メタデータ) (2021-07-16T07:46:41Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。