Normative Diffusion Autoencoders: Application to Amyotrophic Lateral Sclerosis
- URL: http://arxiv.org/abs/2407.14191v1
- Date: Fri, 19 Jul 2024 10:39:24 GMT
- Title: Normative Diffusion Autoencoders: Application to Amyotrophic Lateral Sclerosis
- Authors: Ayodeji Ijishakin, Adamos Hadjasavilou, Ahmed Abdulaal, Nina Montana-Brown, Florence Townend, Edoardo Spinelli, Massimo Fillipi, Federica Agosta, James Cole, Andrea Malaspina,
- Abstract summary: Normative models present a solution as they increase statistical power by leveraging large healthy cohorts.
We combine the benefits of generative and normative modelling by introducing the normative diffusion autoencoder framework.
Our approach outperforms generative and non-generative normative modelling benchmarks in ALS prognostication.
- Score: 1.7397451877951422
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting survival in Amyotrophic Lateral Sclerosis (ALS) is a challenging task. Magnetic resonance imaging (MRI) data provide in vivo insight into brain health, but the low prevalence of the condition and resultant data scarcity limit training set sizes for prediction models. Survival models are further hindered by the subtle and often highly localised profile of ALS-related neurodegeneration. Normative models present a solution as they increase statistical power by leveraging large healthy cohorts. Separately, diffusion models excel in capturing the semantics embedded within images including subtle signs of accelerated brain ageing, which may help predict survival in ALS. Here, we combine the benefits of generative and normative modelling by introducing the normative diffusion autoencoder framework. To our knowledge, this is the first use of normative modelling within a diffusion autoencoder, as well as the first application of normative modelling to ALS. Our approach outperforms generative and non-generative normative modelling benchmarks in ALS prognostication, demonstrating enhanced predictive accuracy in the context of ALS survival prediction and normative modelling in general.
Related papers
- Predicting Deterioration in Mild Cognitive Impairment with Survival Transformers, Extreme Gradient Boosting and Cox Proportional Hazard Modelling [0.08399688944263844]
The paper proposes a novel approach of survival transformers and extreme gradient boosting models in predicting cognitive deterioration.
The proposed approach highlights the potential of these techniques for more accurate early detection and intervention in Alzheimer's dementia disease.
arXiv Detail & Related papers (2024-09-24T16:49:43Z) - Automatic Prediction of Amyotrophic Lateral Sclerosis Progression using Longitudinal Speech Transformer [56.17737749551133]
We propose ALS longitudinal speech transformer (ALST), a neural network-based automatic predictor of ALS disease progression.
By taking advantage of high-quality pretrained speech features and longitudinal information in the recordings, our best model achieves 91.0% AUC.
ALST is capable of fine-grained and interpretable predictions of ALS progression, especially for distinguishing between rarer and more severe cases.
arXiv Detail & Related papers (2024-06-26T13:28:24Z) - Improving Normative Modeling for Multi-modal Neuroimaging Data using
mixture-of-product-of-experts variational autoencoders [0.0]
Existing variational autoencoder (VAE)-based normative models aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors.
This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations.
We adopted the Mixture-of-Product-of-Experts technique which allows better modelling of the joint latent posterior.
arXiv Detail & Related papers (2023-12-02T01:17:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE [0.0]
We propose the use of Tumor Dynamic Neural-ODE as a pharmacology-informed neural network.
We show that TDNODE overcomes a key limitation of existing models in its ability to make unbiased predictions from truncated data.
We show that the generated metrics can be used to predict patients' overall survival (OS) with high accuracy.
arXiv Detail & Related papers (2023-08-02T18:08:27Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Hierarchical Bayesian Regression for Multi-Site Normative Modeling of
Neuroimaging Data [0.0]
We propose an application of hierarchical Bayesian regression (HBR) for multi-site normative modeling.
Our experimental results confirm the superiority of HBR in deriving more accurate normative ranges on large multi-site neuroimaging data.
arXiv Detail & Related papers (2020-05-25T11:55:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.