Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE
- URL: http://arxiv.org/abs/2308.01362v3
- Date: Fri, 20 Oct 2023 20:10:10 GMT
- Title: Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE
- Authors: Mark Laurie and James Lu
- Abstract summary: We propose the use of Tumor Dynamic Neural-ODE as a pharmacology-informed neural network.
We show that TDNODE overcomes a key limitation of existing models in its ability to make unbiased predictions from truncated data.
We show that the generated metrics can be used to predict patients' overall survival (OS) with high accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While tumor dynamic modeling has been widely applied to support the
development of oncology drugs, there remains a need to increase predictivity,
enable personalized therapy, and improve decision-making. We propose the use of
Tumor Dynamic Neural-ODE (TDNODE) as a pharmacology-informed neural network to
enable model discovery from longitudinal tumor size data. We show that TDNODE
overcomes a key limitation of existing models in its ability to make unbiased
predictions from truncated data. The encoder-decoder architecture is designed
to express an underlying dynamical law which possesses the fundamental property
of generalized homogeneity with respect to time. Thus, the modeling formalism
enables the encoder output to be interpreted as kinetic rate metrics, with
inverse time as the physical unit. We show that the generated metrics can be
used to predict patients' overall survival (OS) with high accuracy. The
proposed modeling formalism provides a principled way to integrate multimodal
dynamical datasets in oncology disease modeling.
Related papers
- Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
We introduce a novel method that integrates data-driven and physics-based cost functions.
We propose a unique discretization scheme that quantifies how well the learned distributions of tumor and brain tissues adhere to their respective growth and elasticity equations.
arXiv Detail & Related papers (2024-09-30T15:36:14Z) - Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction [4.850774880198265]
We propose a graph encoder that utilizes a bipartite Graph Convolutional Neural network (GCN) combined with Neural Ordinary Differential Equations (Neural-ODEs)
We first show that the methodology is able to discover a tumor dynamic model that significantly improves upon an empirical model.
Our findings indicate that the methodology holds significant promise and offers potential applications in pre-clinical settings.
arXiv Detail & Related papers (2023-10-02T06:39:08Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Two-step interpretable modeling of Intensive Care Acquired Infections [0.0]
We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models.
The aim is two-fold: to improve the predictive power while maintaining interpretability of the models.
arXiv Detail & Related papers (2023-01-26T14:54:17Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Neural Pharmacodynamic State Space Modeling [1.589915930948668]
We propose a deep generative model that makes use of a novel attention-based neural architecture inspired by the physics of how treatments affect disease state.
Our proposed model yields significant improvements in generalization and, on real-world clinical data, provides interpretable insights into the dynamics of cancer progression.
arXiv Detail & Related papers (2021-02-22T17:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.