Double-Shot 3D Shape Measurement with a Dual-Branch Network for Structured Light Projection Profilometry
- URL: http://arxiv.org/abs/2407.14198v2
- Date: Tue, 10 Dec 2024 01:54:39 GMT
- Title: Double-Shot 3D Shape Measurement with a Dual-Branch Network for Structured Light Projection Profilometry
- Authors: Mingyang Lei, Jingfan Fan, Long Shao, Hong Song, Deqiang Xiao, Danni Ai, Tianyu Fu, Ying Gu, Jian Yang,
- Abstract summary: We propose a dual-branch Convolutional Neural Network (CNN)-Transformer network (PDCNet) to process different structured light (SL) modalities.
Within PDCNet, a Transformer branch is used to capture global perception in the fringe images, while a CNN branch is designed to collect local details in the speckle images.
Our method can reduce fringe order ambiguity while producing high-accuracy results on self-made datasets.
- Score: 14.749887303860717
- License:
- Abstract: The structured light (SL)-based three-dimensional (3D) measurement techniques with deep learning have been widely studied to improve measurement efficiency, among which fringe projection profilometry (FPP) and speckle projection profilometry (SPP) are two popular methods. However, they generally use a single projection pattern for reconstruction, resulting in fringe order ambiguity or poor reconstruction accuracy. To alleviate these problems, we propose a parallel dual-branch Convolutional Neural Network (CNN)-Transformer network (PDCNet), to take advantage of convolutional operations and self-attention mechanisms for processing different SL modalities. Within PDCNet, a Transformer branch is used to capture global perception in the fringe images, while a CNN branch is designed to collect local details in the speckle images. To fully integrate complementary features, we design a double-stream attention aggregation module (DAAM) that consists of a parallel attention subnetwork for aggregating multi-scale spatial structure information. This module can dynamically retain local and global representations to the maximum extent. Moreover, an adaptive mixture density head with bimodal Gaussian distribution is proposed for learning a representation that is precise near discontinuities. Compared to the standard disparity regression strategy, this adaptive mixture head can effectively improve performance at object boundaries. Extensive experiments demonstrate that our method can reduce fringe order ambiguity while producing high-accuracy results on self-made datasets.
Related papers
- Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Adaptive Step-size Perception Unfolding Network with Non-local Hybrid Attention for Hyperspectral Image Reconstruction [0.39134031118910273]
We propose an adaptive step-size perception unfolding network (ASPUN), a deep unfolding network based on FISTA algorithm.
In addition, we design a Non-local Hybrid Attention Transformer(NHAT) module for fully leveraging the receptive field advantage of transformer.
Experimental results show that our ASPUN is superior to the existing SOTA algorithms and achieves the best performance.
arXiv Detail & Related papers (2024-07-04T16:09:52Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - T-Pixel2Mesh: Combining Global and Local Transformer for 3D Mesh Generation from a Single Image [84.08705684778666]
We propose a novel Transformer-boosted architecture, named T-Pixel2Mesh, inspired by the coarse-to-fine approach of P2M.
Specifically, we use a global Transformer to control the holistic shape and a local Transformer to refine the local geometry details.
Our experiments on ShapeNet demonstrate state-of-the-art performance, while results on real-world data show the generalization capability.
arXiv Detail & Related papers (2024-03-20T15:14:22Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
We propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation.
We employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds.
We show that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
arXiv Detail & Related papers (2021-07-04T09:28:18Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.