論文の概要: Longhorn: State Space Models are Amortized Online Learners
- arxiv url: http://arxiv.org/abs/2407.14207v4
- Date: Wed, 31 Jul 2024 22:09:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 13:35:28.475696
- Title: Longhorn: State Space Models are Amortized Online Learners
- Title(参考訳): Longhorn: ステートスペースモデルはオンライン学習者の記憶に残るもの
- Authors: Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, Qiang Liu,
- Abstract要約: 本稿では,オンライン回帰目標を最適化するための暗黙の更新に基づく新しい深層SSMアーキテクチャを提案する。
実験の結果,我々のモデルは,標準シーケンスモデリングベンチマークや言語モデリングタスクにおいて,最先端のSSMよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 51.10124201221601
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most fundamental capability of modern AI methods such as Large Language Models (LLMs) is the ability to predict the next token in a long sequence of tokens, known as ``sequence modeling." Although the Transformers model is the current dominant approach to sequence modeling, its quadratic computational cost with respect to sequence length is a significant drawback. State-space models (SSMs) offer a promising alternative due to their linear decoding efficiency and high parallelizability during training. However, existing SSMs often rely on seemingly ad hoc linear recurrence designs. In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems. This approach links SSM design to formulating precise online learning objectives, with state transition rules derived from optimizing these objectives. Based on this insight, we introduce a novel deep SSM architecture based on the implicit update for optimizing an online regression objective. Our experimental results show that our models outperform state-of-the-art SSMs, including the Mamba model, on standard sequence modeling benchmarks and language modeling tasks.
- Abstract(参考訳): LLM(Large Language Models)のような現代のAIメソッドの最も基本的な能力は、'sequence modeling'として知られる長いトークン列で次のトークンを予測する能力である。
「トランスフォーマーモデルは、現在、シーケンスモデリングにおいて支配的なアプローチであるが、シーケンス長に関する2次計算コストは、大きな欠点である。
ステートスペースモデル(SSM)は、線形復号効率と訓練中の高い並列化性のために、有望な代替手段を提供する。
しかし、既存のSSMは、しばしばアドホックな線形リカレンス設計に依存している。
本研究では、オンライン学習のレンズを通してSSM設計を探求し、特定のオンライン学習問題のメタモジュールとしてSSMを概念化する。
このアプローチは、SSM設計と正確なオンライン学習目標の定式化を結びつけ、これらの目的を最適化した状態遷移規則を導出する。
この知見に基づいて,オンライン回帰目標を最適化するための暗黙の更新に基づく,新しい深層SSMアーキテクチャを提案する。
実験の結果,我々のモデルは,標準シーケンスモデリングベンチマークや言語モデリングタスクにおいて,Mambaモデルを含む最先端のSSMよりも優れていることがわかった。
関連論文リスト
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
継続的学習は、AIモデルに時間とともに一連のタスクを学習する能力を持たせることを目的としている。
ステートスペースモデル(SSM)はコンピュータビジョンにおいて顕著な成功を収めた。
大規模マンバ基礎モデルのコアSSMを連続的に微調整するフレームワークであるMamba-CLを紹介する。
論文 参考訳(メタデータ) (2024-11-23T06:36:16Z) - Oscillatory State-Space Models [61.923849241099184]
長いシーケンスを効率的に学習するための線形状態空間モデル(LinOSS)を提案する。
高速な連想並列スキャンを用いて時間とともに統合された安定な離散化により、提案した状態空間モデルが得られる。
我々はLinOSSが普遍であること、すなわち時間変化関数間の連続および因果作用素写像を近似できることを示す。
論文 参考訳(メタデータ) (2024-10-04T22:00:13Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models [5.37935922811333]
State Space Models (SSM) は、一変量時系列モデリングのための古典的なアプローチである。
本稿では、2つの入力依存型2次元SSMヘッドと異なる離散化プロセスを用いて長期進行と季節パターンを学習するチメラについて述べる。
実験により,広範囲で多様なベンチマークにおいて,Chimeraの優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-06T17:58:09Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
自己保持機構の計算コストは、長いシーケンスの実用性を制限する。
我々はLongVQと呼ばれる新しい手法を提案し、長さ固定されたコードブックとしてグローバルな抽象化を圧縮する。
LongVQは動的グローバルパターンとローカルパターンを効果的に維持し、長距離依存性の問題の欠如を補うのに役立つ。
論文 参考訳(メタデータ) (2024-04-17T08:26:34Z) - The Hidden Attention of Mamba Models [54.50526986788175]
Mamba層は、複数のドメインをモデリングするのに非常に効果的である効率的な選択状態空間モデル(SSM)を提供する。
このようなモデルを注意駆動モデルとみなすことができる。
この新たな視点は、トランスの自己保持層のメカニズムを経験的かつ理論的に比較することを可能にする。
論文 参考訳(メタデータ) (2024-03-03T18:58:21Z) - Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks [25.092302463435523]
状態空間モデル(SSM)は言語モデリングにおけるトランスフォーマーネットワークの代替として提案されている。
本研究では,各種タスクを対象としたトランスフォーマーモデルに対して,マンバに着目したSSMのICL性能を評価する。
論文 参考訳(メタデータ) (2024-02-06T18:56:35Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
ファンデーションモデルは、ほぼ普遍的にTransformerアーキテクチャとコアアテンションモジュールに基づいている。
このようなモデルの重大な弱点は、コンテンツベースの推論を実行できないことである。
我々はこれらの選択的なSSMを、注意やブロック(Mamba)を使わずに、単純化されたエンドツーエンドニューラルネットワークアーキテクチャに統合する(Mamba)。
一般的なシーケンスモデルバックボーンとして、Mambaは言語、オーディオ、ゲノミクスといったいくつかのモードで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T18:01:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。