Predictive Simultaneous Interpretation: Harnessing Large Language Models for Democratizing Real-Time Multilingual Communication
- URL: http://arxiv.org/abs/2407.14269v1
- Date: Tue, 2 Jul 2024 13:18:28 GMT
- Title: Predictive Simultaneous Interpretation: Harnessing Large Language Models for Democratizing Real-Time Multilingual Communication
- Authors: Kurando Iida, Kenjiro Mimura, Nobuo Ito,
- Abstract summary: We present a novel algorithm that generates real-time translations by predicting speaker utterances and expanding multiple possibilities in a tree-like structure.
Our theoretical analysis, supported by illustrative examples, suggests that this approach could lead to more natural and fluent translations with minimal latency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a groundbreaking approach to simultaneous interpretation by directly leveraging the predictive capabilities of Large Language Models (LLMs). We present a novel algorithm that generates real-time translations by predicting speaker utterances and expanding multiple possibilities in a tree-like structure. This method demonstrates unprecedented flexibility and adaptability, potentially overcoming the structural differences between languages more effectively than existing systems. Our theoretical analysis, supported by illustrative examples, suggests that this approach could lead to more natural and fluent translations with minimal latency. The primary purpose of this paper is to share this innovative concept with the academic community, stimulating further research and development in this field. We discuss the theoretical foundations, potential advantages, and implementation challenges of this technique, positioning it as a significant step towards democratizing multilingual communication.
Related papers
- Constructive Approach to Bidirectional Causation between Qualia Structure and Language Emergence [5.906966694759679]
This paper presents a novel perspective on the bidirectional causation between language emergence and relational structure of subjective experiences.
We hypothesize that languages with distributional semantics, e.g., syntactic-semantic structures, may have emerged through the process of aligning internal representations among individuals.
arXiv Detail & Related papers (2024-09-14T11:03:12Z) - Language Models as Models of Language [0.0]
This chapter critically examines the potential contributions of modern language models to theoretical linguistics.
I review a growing body of empirical evidence suggesting that language models can learn hierarchical syntactic structure and exhibit sensitivity to various linguistic phenomena.
I conclude that closer collaboration between theoretical linguists and computational researchers could yield valuable insights.
arXiv Detail & Related papers (2024-08-13T18:26:04Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - The Problem of Alignment [1.2277343096128712]
Large Language Models produce sequences learned as statistical patterns from large corpora.
After initial training models must be aligned with human values, prefer certain continuations over others.
We examine this practice of structuration as a two-way interaction between users and models.
arXiv Detail & Related papers (2023-12-30T11:44:59Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
Large language models (LLMs) have shown remarkable capabilities in various natural language understanding tasks.
We propose EASE, an Explanation-Aware Soft Ensemble framework to empower in-context learning with LLMs.
arXiv Detail & Related papers (2023-11-13T06:13:38Z) - Entity Embeddings : Perspectives Towards an Omni-Modality Era for Large
Language Models [0.0]
Large Language Models (LLMs) are evolving to integrate multiple modalities, such as text, image, and audio into a unified linguistic space.
We envision a future direction where conceptual entities defined in sequences of text can also be imagined as modalities.
arXiv Detail & Related papers (2023-10-27T17:04:10Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
This paper presents the first empirical study on the adversarial robustness of a large prompt-based language model of code, codex.
Our results demonstrate that the state-of-the-art (SOTA) code-language models are vulnerable to carefully crafted adversarial examples.
arXiv Detail & Related papers (2023-01-30T13:21:00Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
Contextualized word representations from pretrained multilingual language models have become the de facto standard for addressing natural language tasks.
For languages rarely or never seen by these models, directly using such models often results in suboptimal representation or use of data.
arXiv Detail & Related papers (2021-06-16T18:13:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.