論文の概要: How to Blend Concepts in Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.14280v2
- Date: Sun, 22 Sep 2024 07:02:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 19:38:31.784514
- Title: How to Blend Concepts in Diffusion Models
- Title(参考訳): 拡散モデルにおけるブレンド概念
- Authors: Lorenzo Olearo, Giorgio Longari, Simone Melzi, Alessandro Raganato, Rafael Peñaloza,
- Abstract要約: 近年の手法は複数の潜在表現とその関連性を利用しており、この研究はさらに絡み合っている。
我々のゴールは、潜在空間における操作が根底にある概念にどのように影響するかを理解することです。
我々の結論は、宇宙操作によるブレンドの概念は可能であるが、最良の戦略はブレンドの文脈に依存する。
- 参考スコア(独自算出の注目度): 48.68800153838679
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: For the last decade, there has been a push to use multi-dimensional (latent) spaces to represent concepts; and yet how to manipulate these concepts or reason with them remains largely unclear. Some recent methods exploit multiple latent representations and their connection, making this research question even more entangled. Our goal is to understand how operations in the latent space affect the underlying concepts. To that end, we explore the task of concept blending through diffusion models. Diffusion models are based on a connection between a latent representation of textual prompts and a latent space that enables image reconstruction and generation. This task allows us to try different text-based combination strategies, and evaluate easily through a visual analysis. Our conclusion is that concept blending through space manipulation is possible, although the best strategy depends on the context of the blend.
- Abstract(参考訳): 過去10年間、多次元(ラテント)空間を使って概念を表現しようとする動きがあったが、それでもこれらの概念や理由をどう操作するかは明らかになっていない。
最近の手法では複数の潜在表現とその関連性を利用しており、この研究はさらに絡み合っている。
我々のゴールは、潜在空間における操作が根底にある概念にどのように影響するかを理解することです。
そこで本研究では,拡散モデルを用いた概念ブレンディングの課題について検討する。
拡散モデルは、テキストプロンプトの潜時表現と画像再構成と生成を可能にする潜時空間との間の接続に基づいている。
このタスクにより、異なるテキストベースの組み合わせ戦略を試すことができ、視覚分析により容易に評価できる。
我々の結論は、宇宙操作によるブレンドの概念は可能であるが、最良の戦略はブレンドの文脈に依存する。
関連論文リスト
- Scaling Concept With Text-Guided Diffusion Models [53.80799139331966]
概念を置き換える代わりに、概念自体を強化するか、あるいは抑圧できるだろうか?
ScalingConceptは、分解された概念を、新しい要素を導入することなく、実際の入力でスケールアップまたはスケールダウンする、シンプルで効果的な方法である。
さらに重要なのは、ScalingConceptは画像とオーディオドメインにまたがる様々な新しいゼロショットアプリケーションを可能にすることだ。
論文 参考訳(メタデータ) (2024-10-31T17:09:55Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
テキスト・ツー・イメージ(T2I)拡散モデルはしばしば、透かしや安全でない画像のような望ましくない概念を不注意に生成する。
幾何学駆動制御に基づく新しい概念除去手法であるGeom-Erasingを提案する。
論文 参考訳(メタデータ) (2023-10-09T17:13:10Z) - The Hidden Language of Diffusion Models [70.03691458189604]
本稿では,テキスト概念の内部表現を拡散モデルで解釈する新しい手法であるConceptorを提案する。
概念間の驚くべき視覚的つながりは、それらのテキスト意味論を超越している。
我々はまた、模範的、偏見、名高い芸術様式、あるいは複数の意味の同時融合に依存する概念も発見する。
論文 参考訳(メタデータ) (2023-06-01T17:57:08Z) - Break-A-Scene: Extracting Multiple Concepts from a Single Image [80.47666266017207]
テキストシーン分解の課題を紹介する。
本稿では,対象概念の存在を示すマスクを用いた入力画像の拡張を提案する。
次に、新しい2段階のカスタマイズプロセスを示す。
論文 参考訳(メタデータ) (2023-05-25T17:59:04Z) - When are Post-hoc Conceptual Explanations Identifiable? [18.85180188353977]
人間の概念ラベルが利用できない場合、概念発見手法は解釈可能な概念のための訓練された埋め込み空間を探索する。
我々は、概念発見は特定可能であり、多くの既知の概念を確実に回収し、説明の信頼性を保証するべきであると論じている。
本結果は,人間ラベルのない信頼性の高い概念発見を保証できる厳密な条件を強調した。
論文 参考訳(メタデータ) (2022-06-28T10:21:17Z) - FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic
descriptions, and Conceptual Relations [99.54048050189971]
自然に発生する複数のデータストリームによってガイドされる新しい視覚概念を素早く学習するフレームワークを提案する。
学習された概念は、未知の画像について推論することで質問に答えるなど、下流のアプリケーションをサポートする。
合成と実世界の両方のデータセットにおけるモデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-03-30T19:45:00Z) - Sparse Subspace Clustering for Concept Discovery (SSCCD) [1.7319807100654885]
概念は高いレベルの人間の理解の鍵となる構成要素である。
局所帰属法では、サンプル間のコヒーレントモデル挙動を特定できない。
隠れた特徴層の低次元部分空間として、新しい概念の定義を提唱した。
論文 参考訳(メタデータ) (2022-03-11T16:15:48Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
概念発見は、深層学習の専門家とモデルエンドユーザーの間のギャップを埋めるために重要である。
現在のアプローチには、手作りの概念データセットと、それを潜在空間方向に変換することが含まれる。
本研究では,複数の仮説テストに基づく意味ある概念のユーザ発見と,インタラクティブな可視化に関する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-09T22:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。