Theoretical Analysis on Block Time Distributions in Byzantine Fault-Tolerant Consensus Blockchains
- URL: http://arxiv.org/abs/2407.14299v1
- Date: Fri, 19 Jul 2024 13:30:46 GMT
- Title: Theoretical Analysis on Block Time Distributions in Byzantine Fault-Tolerant Consensus Blockchains
- Authors: Akihiro Fujihara,
- Abstract summary: We propose a mathematical model to account for the processes of block propagation and validation within Byzantine fault-tolerant consensus blockchains.
We derive an approximate formula for the block time distribution suitable for data analysis purposes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some blockchain networks employ a distributed consensus algorithm featuring Byzantine fault tolerance. Notably, certain public chains, such as Cosmos and Tezos, which operate on a proof-of-stake mechanism, have adopted this algorithm. While it is commonly assumed that these blockchains maintain a nearly constant block creation time, empirical analysis reveals fluctuations in this interval; this phenomenon has received limited attention. In this paper, we propose a mathematical model to account for the processes of block propagation and validation within Byzantine fault-tolerant consensus blockchains, aiming to theoretically analyze the probability distribution of block time. First, we propose stochastic processes governing the broadcasting communications among validator nodes. Consequently, we theoretically demonstrate that the probability distribution of broadcast time among validator nodes adheres to the Gumbel distribution. This finding indicates that the distribution of block time typically arises from convolving multiple Gumbel distributions. Additionally, we derive an approximate formula for the block time distribution suitable for data analysis purposes. By fitting this approximation to real-world block time data, we demonstrate the consistent estimation of block time distribution parameters.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Tie-Breaking Rule Based on Partial Proof of Work in a Blockchain [2.9281463284266973]
We propose another countermeasure that can be easily applied to existing proof of work blockchain systems.
By using the characteristic of partial proof of work, the proposed method enables miners to choose the last-generated block in a chain tie.
Only weak synchrony, which is already met by existing systems such as Bitcoin, is required for effective functioning.
arXiv Detail & Related papers (2024-03-22T08:24:12Z) - Statistical Confidence in Mining Power Estimates for PoW Blockchains [1.7061868168035934]
For Proof of Work (PoW) blockchains, the distribution of mining power cannot be read directly from the blockchain.
We introduce a framework to quantify this statistical uncertainty for the Nakamoto coefficient.
arXiv Detail & Related papers (2024-03-20T16:43:30Z) - 'Frequency-modulated' pulsed Bell setup avoids post-selection [62.997667081978825]
Bell experiments require post-selection of data to define coincidences.
In Quantum Key Distribution (QKD), it opens vulnerability in case of a hostile adversary.
A pulsed source gets rid of clocks' drift, but there is still the problem of identifying the same pulse in each remote station.
This immediately defines the condition of valid coincidences in a manner that is unaffected by the drift between the clocks.
arXiv Detail & Related papers (2023-07-05T18:09:51Z) - Analyzing Geospatial Distribution in Blockchains [15.432313954857106]
We analyze blockchain decentralization's often-overlooked but quantifiable dimension: geospatial distribution of transaction processing.
Minority validators tend not to meet the performance requirements, often misidentified as crash failures.
We develop a solution that easily integrates with consensus protocols.
arXiv Detail & Related papers (2023-05-28T16:35:01Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions.
We propose regularizing OT with the beta-potential term associated with the so-called $beta$-divergence.
We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers.
arXiv Detail & Related papers (2022-12-26T18:37:28Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time
Reinforcement Learning [39.07307690074323]
We consider the problem of predicting the distribution of returns obtained by an agent interacting in a continuous-time environment.
Accurate return predictions have proven useful for determining optimal policies for risk-sensitive control, state representations, multiagent coordination, and more.
We propose a tractable algorithm for approximately solving the distributional HJB based on a JKO scheme, which can be implemented in an online control algorithm.
arXiv Detail & Related papers (2022-05-24T16:33:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.