Tie-Breaking Rule Based on Partial Proof of Work in a Blockchain
- URL: http://arxiv.org/abs/2403.15030v2
- Date: Fri, 7 Jun 2024 15:56:31 GMT
- Title: Tie-Breaking Rule Based on Partial Proof of Work in a Blockchain
- Authors: Akira Sakurai, Kazuyuki Shudo,
- Abstract summary: We propose another countermeasure that can be easily applied to existing proof of work blockchain systems.
By using the characteristic of partial proof of work, the proposed method enables miners to choose the last-generated block in a chain tie.
Only weak synchrony, which is already met by existing systems such as Bitcoin, is required for effective functioning.
- Score: 2.9281463284266973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the area of blockchain, numerous methods have been proposed for suppressing intentional forks by attackers more effectively than the random rule. However, all of them, except for the random rule, require major updates, rely on a trusted third party, or assume strong synchrony. Hence, it is challenging to apply these methods to existing systems such as Bitcoin. To address these issues, we propose another countermeasure that can be easily applied to existing proof of work blockchain systems. Our method is a tie-breaking rule that uses partial proof of work, which does not function as a block, as a time standard with finer granularity. By using the characteristic of partial proof of work, the proposed method enables miners to choose the last-generated block in a chain tie, which suppresses intentional forks by attackers. Only weak synchrony, which is already met by existing systems such as Bitcoin, is required for effective functioning. We evaluated the proposed method through a detailed analysis that is lacking in existing works. In networks that adopt our method, the proportion of the attacker hashrate necessary for selfish mining was approximately 0.31479 or higher, regardless of the block propagation capability of the attacker. Furthermore, we demonstrated through extended selfish mining that the impact of Match against pre-generated block, which is a concern in all last-generated rules, can be mitigated with appropriate parameter settings.
Related papers
- A Fully Local Last-Generated Rule in a Blockchain [2.9281463284266973]
An effective method for suppressing intentional forks in a blockchain is the last-generated rule.
This rule helps invalidate blocks that are withheld by adversaries for a certain period.
Existing last-generated rules face an issue in that their applications to the system are not fully localized.
arXiv Detail & Related papers (2024-11-13T08:47:40Z) - BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - Securing Proof of Stake Blockchains: Leveraging Multi-Agent Reinforcement Learning for Detecting and Mitigating Malicious Nodes [0.2982610402087727]
MRL-PoS+ is a novel consensus algorithm to enhance the security of PoS blockchains.
We show that MRL-PoS+ significantly improves the attack resilience of PoS blockchains.
arXiv Detail & Related papers (2024-07-30T17:18:03Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Fully Automated Selfish Mining Analysis in Efficient Proof Systems Blockchains [5.864854777864723]
We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems.
We propose a novel selfish mining attack that aims to maximize expected relative revenue of the adversary.
We present a formal analysis procedure which computes an $epsilon$-tight lower bound on the optimal expected relative revenue in the MDP.
arXiv Detail & Related papers (2024-05-07T15:44:39Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Statistical Confidence in Mining Power Estimates for PoW Blockchains [1.7061868168035934]
For Proof of Work (PoW) blockchains, the distribution of mining power cannot be read directly from the blockchain.
We introduce a framework to quantify this statistical uncertainty for the Nakamoto coefficient.
arXiv Detail & Related papers (2024-03-20T16:43:30Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - A Double-Linked Blockchain Approach Based on Proof-of-Refundable-Tax Consensus Algorithm [0.0]
We propose a double-linked blockchain data structure that greatly improves blockchain performance and guarantees single chain with no forks.
With the proposed proof-of-refundable-tax (PoRT) consensus algorithm, our approach can construct highly reliable, efficient, fair and stable blockchain operations.
arXiv Detail & Related papers (2021-09-14T08:30:32Z) - Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks [81.13338949407205]
Recent works show that optimal bandit algorithms are vulnerable to adversarial attacks and can fail completely in the presence of attacks.
Existing robust bandit algorithms only work for the non-contextual setting under the attack of rewards.
We provide the first robust bandit algorithm for linear contextual bandit setting under a fully adaptive and omniscient attack.
arXiv Detail & Related papers (2021-06-05T22:20:34Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.