Dyn-Adapter: Towards Disentangled Representation for Efficient Visual Recognition
- URL: http://arxiv.org/abs/2407.14302v2
- Date: Tue, 23 Jul 2024 07:57:17 GMT
- Title: Dyn-Adapter: Towards Disentangled Representation for Efficient Visual Recognition
- Authors: Yurong Zhang, Honghao Chen, Xinyu Zhang, Xiangxiang Chu, Li Song,
- Abstract summary: This paper presents an efficient visual recognition paradigm, called Dynamic Adapter (Dyn-Adapter)
We devise a dynamic architecture with balanced early heads for multi-level feature extraction, along with adaptive training strategy.
We reduce FLOPs during inference by 50%, while maintaining or even yielding higher recognition accuracy.
- Score: 22.615830919860777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient transfer learning (PETL) is a promising task, aiming to adapt the large-scale pre-trained model to downstream tasks with a relatively modest cost. However, current PETL methods struggle in compressing computational complexity and bear a heavy inference burden due to the complete forward process. This paper presents an efficient visual recognition paradigm, called Dynamic Adapter (Dyn-Adapter), that boosts PETL efficiency by subtly disentangling features in multiple levels. Our approach is simple: first, we devise a dynamic architecture with balanced early heads for multi-level feature extraction, along with adaptive training strategy. Second, we introduce a bidirectional sparsity strategy driven by the pursuit of powerful generalization ability. These qualities enable us to fine-tune efficiently and effectively: we reduce FLOPs during inference by 50%, while maintaining or even yielding higher recognition accuracy. Extensive experiments on diverse datasets and pretrained backbones demonstrate the potential of Dyn-Adapter serving as a general efficiency booster for PETL in vision recognition tasks.
Related papers
- big.LITTLE Vision Transformer for Efficient Visual Recognition [34.015778625984055]
big.LITTLE Vision Transformer is an innovative architecture aimed at achieving efficient visual recognition.
System is composed of two distinct blocks: the big performance block and the LITTLE efficiency block.
When processing an image, our system determines the importance of each token and allocates them accordingly.
arXiv Detail & Related papers (2024-10-14T08:21:00Z) - iConFormer: Dynamic Parameter-Efficient Tuning with Input-Conditioned Adaptation [15.97351561456467]
In this paper, we propose a novel PEFT approach, input-Conditioned transFormer, termed iConFormer.
We introduce an input-Conditioned Network (iCoN) in the dynamic adapter that enables instance-level feature transformation.
To be specific, iCoN generates channel-wise convolutional kernels for each feature and transform it using adaptive convolution process to effectively capture task-specific and fine-grained details tailor to downstream tasks.
arXiv Detail & Related papers (2024-09-04T16:06:23Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation [61.57833648734164]
We propose a novel Parallel Yielding Re-Activation (PYRA) method for training-inference efficient task adaptation.
PYRA outperforms all competing methods under both low compression rate and high compression rate.
arXiv Detail & Related papers (2024-03-14T09:06:49Z) - Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing [8.88477151877883]
High-capacity pre-trained models have revolutionized problem-solving in computer vision.
We propose a novel Adapter Re-Composing (ARC) strategy that addresses efficient pre-trained model adaptation.
Our approach considers the reusability of adaptation parameters and introduces a parameter-sharing scheme.
arXiv Detail & Related papers (2023-10-10T01:04:15Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Towards Efficient Visual Adaption via Structural Re-parameterization [76.57083043547296]
We propose a parameter-efficient and computational friendly adapter for giant vision models, called RepAdapter.
RepAdapter outperforms full tuning by +7.2% on average and saves up to 25% training time, 20% GPU memory, and 94.6% storage cost of ViT-B/16 on VTAB-1k.
arXiv Detail & Related papers (2023-02-16T06:14:15Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.