Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing
- URL: http://arxiv.org/abs/2310.06234v2
- Date: Wed, 17 Jan 2024 00:03:00 GMT
- Title: Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing
- Authors: Wei Dong, Dawei Yan, Zhijun Lin, Peng Wang
- Abstract summary: High-capacity pre-trained models have revolutionized problem-solving in computer vision.
We propose a novel Adapter Re-Composing (ARC) strategy that addresses efficient pre-trained model adaptation.
Our approach considers the reusability of adaptation parameters and introduces a parameter-sharing scheme.
- Score: 8.88477151877883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of high-capacity pre-trained models has revolutionized
problem-solving in computer vision, shifting the focus from training
task-specific models to adapting pre-trained models. Consequently, effectively
adapting large pre-trained models to downstream tasks in an efficient manner
has become a prominent research area. Existing solutions primarily concentrate
on designing lightweight adapters and their interaction with pre-trained
models, with the goal of minimizing the number of parameters requiring updates.
In this study, we propose a novel Adapter Re-Composing (ARC) strategy that
addresses efficient pre-trained model adaptation from a fresh perspective. Our
approach considers the reusability of adaptation parameters and introduces a
parameter-sharing scheme. Specifically, we leverage symmetric
down-/up-projections to construct bottleneck operations, which are shared
across layers. By learning low-dimensional re-scaling coefficients, we can
effectively re-compose layer-adaptive adapters. This parameter-sharing strategy
in adapter design allows us to significantly reduce the number of new
parameters while maintaining satisfactory performance, thereby offering a
promising approach to compress the adaptation cost. We conduct experiments on
24 downstream image classification tasks using various Vision Transformer
variants to evaluate our method. The results demonstrate that our approach
achieves compelling transfer learning performance with a reduced parameter
count. Our code is available at
\href{https://github.com/DavidYanAnDe/ARC}{https://github.com/DavidYanAnDe/ARC}.
Related papers
- Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)
Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.
We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Low-Rank Rescaled Vision Transformer Fine-Tuning: A Residual Design Approach [17.678759882763078]
Fine-tuning for pre-trained Vision Transformers aims to adeptly tailor a model to downstream tasks.
Striking a balance between retaining the generalizable representation capacity of the pre-trained model and acquiring task-specific features is a key challenge.
We propose a Residual-based Low-Rank Rescaling (RLRR) fine-tuning strategy.
arXiv Detail & Related papers (2024-03-28T00:14:53Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
We propose an adaptation method which does not backpropagate gradients through the backbone.
We achieve this by designing a lightweight network in parallel that operates on features from the frozen, pretrained backbone.
arXiv Detail & Related papers (2024-02-05T10:55:47Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
We propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation.
Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.
arXiv Detail & Related papers (2023-10-31T10:45:03Z) - Towards Efficient Visual Adaption via Structural Re-parameterization [76.57083043547296]
We propose a parameter-efficient and computational friendly adapter for giant vision models, called RepAdapter.
RepAdapter outperforms full tuning by +7.2% on average and saves up to 25% training time, 20% GPU memory, and 94.6% storage cost of ViT-B/16 on VTAB-1k.
arXiv Detail & Related papers (2023-02-16T06:14:15Z) - AdapterBias: Parameter-efficient Token-dependent Representation Shift
for Adapters in NLP Tasks [55.705355299065474]
Transformer-based pre-trained models with millions of parameters require large storage.
Recent approaches tackle this shortcoming by training adapters, but these approaches still require a relatively large number of parameters.
In this study, AdapterBias, a surprisingly simple yet effective adapter architecture, is proposed.
arXiv Detail & Related papers (2022-04-30T16:49:41Z) - Parameter-efficient Model Adaptation for Vision Transformers [45.3460867776953]
We study parameter-efficient model adaptation strategies for vision transformers on the image classification task.
We propose a parameter-efficient model adaptation framework, which first selects submodules by measuring local intrinsic dimensions.
Our method performs the best in terms of the tradeoff between accuracy and parameter efficiency across 20 image classification datasets.
arXiv Detail & Related papers (2022-03-29T05:30:09Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
In this paper, we develop a parameter efficient transfer learning architecture, termed as PeterRec.
PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks.
We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks.
arXiv Detail & Related papers (2020-01-13T14:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.