論文の概要: EmoCAM: Toward Understanding What Drives CNN-based Emotion Recognition
- arxiv url: http://arxiv.org/abs/2407.14314v1
- Date: Fri, 19 Jul 2024 13:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:24:54.171873
- Title: EmoCAM: Toward Understanding What Drives CNN-based Emotion Recognition
- Title(参考訳): EmoCAM:CNNをベースとした感情認識の理解に向けて
- Authors: Youssef Doulfoukar, Laurent Mertens, Joost Vennekens,
- Abstract要約: 他のニューラルネットワークと同様に、それらは"ブラックボックス"モデルであり、説明性に乏しい。
この研究は、画像からの感情認識の特定の下流タスクに関係しており、CAMベースの手法とコーパスレベルでのオブジェクト検出を組み合わせたフレームワークを提案し、特定のモデル、例えばEmoNetでは、イメージに特定の感情を割り当てることに頼っている。
- 参考スコア(独自算出の注目度): 3.031375888004876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks are particularly suited for image analysis tasks, such as Image Classification, Object Recognition or Image Segmentation. Like all Artificial Neural Networks, however, they are "black box" models, and suffer from poor explainability. This work is concerned with the specific downstream task of Emotion Recognition from images, and proposes a framework that combines CAM-based techniques with Object Detection on a corpus level to better understand on which image cues a particular model, in our case EmoNet, relies to assign a specific emotion to an image. We demonstrate that the model mostly focuses on human characteristics, but also explore the pronounced effect of specific image modifications.
- Abstract(参考訳): 畳み込みニューラルネットワークは、画像分類、オブジェクト認識、イメージセグメンテーションなどの画像解析タスクに特に適している。
しかし、他のニューラルネットワークと同様に、それらは「ブラックボックス」モデルであり、説明性に乏しい。
この研究は、画像からの感情認識の特定の下流タスクに関係しており、CAMベースの手法とコーパスレベルでのオブジェクト検出を組み合わせたフレームワークを提案し、特定のモデル、例えばEmoNetでは、イメージに特定の感情を割り当てることに頼っている。
モデルは主に人間の特徴に焦点をあてるが、特定の画像修正の顕著な効果についても検討する。
関連論文リスト
- Connectivity-Inspired Network for Context-Aware Recognition [1.049712834719005]
視覚認知に対処するために,生体脳の回路モチーフを取り入れることの効果に焦点をあてる。
私たちの畳み込みアーキテクチャは、人間の皮質と皮質下の流れの接続にインスパイアされています。
我々はコンテキスト認識をモデル化するための新しいプラグイン・アンド・プレイ・モジュールを提案する。
論文 参考訳(メタデータ) (2024-09-06T15:42:10Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
感情中心型生成的リプレイ (ECgr) は, 生成的対向ネットワークから合成画像を統合することで, この課題に対処する。
ECgrは、生成された画像の忠実性を保証するために品質保証アルゴリズムを組み込んでいる。
4つの多様な表情データセットに対する実験結果から,擬似リハーサル法により生成されたイメージを組み込むことで,ターゲットとするデータセットとソースデータセットのトレーニングが促進されることが示された。
論文 参考訳(メタデータ) (2024-04-18T15:28:34Z) - Understanding the Role of Pathways in a Deep Neural Network [4.456675543894722]
分類タスクで訓練された畳み込みニューラルネットワーク(CNN)を分析し,個々の画素の拡散経路を抽出するアルゴリズムを提案する。
画像からの個々のピクセルの最も大きな経路は、分類に重要な各層の特徴マップを横断する傾向にある。
論文 参考訳(メタデータ) (2024-02-28T07:53:19Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
人間は簡潔で直感的な説明を使って予測を説明することができる。
特徴表現がテキストである視覚モデルでは,画像ネットイメージを効果的に分類できることを示す。
論文 参考訳(メタデータ) (2023-06-29T00:24:42Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
本稿では,ある絵画の視覚的体験における視聴者の眼球運動分析に焦点を当てた。
我々は、人間の視覚的注意を予測するための新しいアプローチを導入し、人間の認知機能に影響を及ぼす。
提案した新しいアーキテクチャは、画像を取り込んでスキャンパスを返す。
論文 参考訳(メタデータ) (2022-09-22T22:27:08Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
画像から感情を予測するために,SOLVER(Scene-Object Interrelated Visual Emotion Reasoning Network)を提案する。
異なるオブジェクト間の感情関係を掘り下げるために、まずセマンティックな概念と視覚的特徴に基づいて感情グラフを構築します。
また、シーンとオブジェクトを統合するScene-Object Fusion Moduleを設計し、シーンの特徴を利用して、提案したシーンベースのアテンションメカニズムでオブジェクトの特徴の融合プロセスを導出する。
論文 参考訳(メタデータ) (2021-10-24T02:41:41Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - Interpretable Image Emotion Recognition: A Domain Adaptation Approach Using Facial Expressions [11.808447247077902]
本稿では,ジェネリックイメージ中の感情を識別するための特徴に基づくドメイン適応手法を提案する。
これは、事前訓練されたモデルと、画像感情認識(IER)のための十分に注釈付けされたデータセットの限られた可用性の課題に対処する。
提案されたIERシステムは、IAPSaデータセットの60.98%、ArtPhotoデータセットの58.86%、FIデータセットの69.13%、EMOTICデータセットの58.06%の感情分類精度を示した。
論文 参考訳(メタデータ) (2020-11-17T02:55:16Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。