論文の概要: FuzzTheREST: An Intelligent Automated Black-box RESTful API Fuzzer
- arxiv url: http://arxiv.org/abs/2407.14361v1
- Date: Fri, 19 Jul 2024 14:43:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:15:09.202591
- Title: FuzzTheREST: An Intelligent Automated Black-box RESTful API Fuzzer
- Title(参考訳): FuzzTheREST: インテリジェントな自動ブラックボックスRESTful APIファザ
- Authors: Tiago Dias, Eva Maia, Isabel Praça,
- Abstract要約: この作業では、脆弱性検出にReinforcement Learning(RL)を使用しているファジィテストツールのブラックボックスAPIを導入している。
このツールは6つのユニークな脆弱性を発見し、55%のコードカバレッジを達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software's pervasive impact and increasing reliance in the era of digital transformation raise concerns about vulnerabilities, emphasizing the need for software security. Fuzzy testing is a dynamic analysis software testing technique that consists of feeding faulty input data to a System Under Test (SUT) and observing its behavior. Specifically regarding black-box RESTful API testing, recent literature has attempted to automate this technique using heuristics to perform the input search and using the HTTP response status codes for classification. However, most approaches do not keep track of code coverage, which is important to validate the solution. This work introduces a black-box RESTful API fuzzy testing tool that employs Reinforcement Learning (RL) for vulnerability detection. The fuzzer operates via the OpenAPI Specification (OAS) file and a scenarios file, which includes information to communicate with the SUT and the sequences of functionalities to test, respectively. To evaluate its effectiveness, the tool was tested on the Petstore API. The tool found a total of six unique vulnerabilities and achieved 55\% code coverage.
- Abstract(参考訳): ソフトウェアが広範に影響を及ぼし、デジタルトランスフォーメーションの時代への依存度が高まると、脆弱性に対する懸念が高まり、ソフトウェアセキュリティの必要性が強調される。
ファジィテスト(英: Fuzzy Testing)は、システムアンダーテスト(SUT)に障害入力データを供給し、その振る舞いを観察する動的解析ソフトウェアテスト技術である。
特にブラックボックスRESTful APIテストに関して、最近の文献では、このテクニックをヒューリスティックを使って、入力検索を実行し、HTTP応答ステータスコードを分類するために使用しようと試みている。
しかし、ほとんどのアプローチはコードカバレッジを追跡していません。
この作業では、脆弱性検出にReinforcement Learning(RL)を使用する、ブラックボックスのRESTful APIファジィテストツールを導入している。
ファズーはOpenAPI Specification (OAS)ファイルとシナリオファイルを介して動作し、それぞれSUTと通信する情報とテストする機能のシーケンスを含む。
有効性を評価するため、このツールはPetstore APIでテストされた。
このツールは6つのユニークな脆弱性を発見し、コードカバレッジは55%に達した。
関連論文リスト
- Utilizing API Response for Test Refinement [2.8002188463519944]
本稿では,応答メッセージを利用した動的テスト改善手法を提案する。
インテリジェントエージェントを使用すると、テストシナリオを生成するためにさらに使用されるAPI仕様に制約が追加される。
提案されたアプローチは、4xxレスポンスの数を減少させ、より現実的なテストケースを生成するための一歩を踏み出した。
論文 参考訳(メタデータ) (2025-01-30T05:26:32Z) - LlamaRestTest: Effective REST API Testing with Small Language Models [50.058600784556816]
LlamaRestTestは、2つのカスタムLCMを使って現実的なテストインプットを生成する新しいアプローチである。
LlamaRestTestは、RESTGPTで強化された仕様でさえ、コードカバレッジとエラー検出において最先端のツールを上回っている。
論文 参考訳(メタデータ) (2025-01-15T05:51:20Z) - Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models [49.214291813478695]
AIアプリケーションで広く使用されているディープラーニング(DL)ライブラリは、オーバーフローやバッファフリーエラーなどの脆弱性を含むことが多い。
従来のファジィングはDLライブラリの複雑さとAPIの多様性に悩まされている。
DLライブラリのためのLLM駆動ファジィ手法であるDFUZZを提案する。
論文 参考訳(メタデータ) (2025-01-08T07:07:22Z) - A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs [46.65963514391019]
私たちは、REST APIテストに依存性組み込みのマルチエージェントアプローチを採用する最初のブラックボックスツールであるAutoRestTestを紹介します。
このアプローチでは、REST APIテストを分離可能な問題として扱い、4人のエージェントがAPI探索を最適化するために協力します。
12の現実世界のRESTサービス上でのAutoRestTestの評価は、主要な4つのブラックボックスREST APIテストツールよりも優れています。
論文 参考訳(メタデータ) (2024-11-11T16:20:27Z) - DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement Learning [5.756036843502232]
本稿では、REST APIを自動テストするための新しいブラックボックスアプローチであるDeepRESTを紹介します。
深い強化学習を活用して、暗黙のAPI制約、すなわちAPIドキュメントから隠された制約を明らかにする。
実験により,提案手法は高いテストカバレッジと故障検出を実現する上で極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-08-16T08:03:55Z) - KAT: Dependency-aware Automated API Testing with Large Language Models [1.7264233311359707]
KAT(Katalon API Testing)は、APIを検証するためのテストケースを自律的に生成する、AI駆動の新たなアプローチである。
実世界の12のサービスを用いたKATの評価は、検証カバレッジを改善し、文書化されていないステータスコードを検出し、これらのサービスの偽陽性を低減できることを示している。
論文 参考訳(メタデータ) (2024-07-14T14:48:18Z) - Prompt Engineering-assisted Malware Dynamic Analysis Using GPT-4 [45.935748395725206]
GPT-4を用いた即時エンジニアリング支援型マルウェア動的解析手法を提案する。
この方法では、APIシーケンス内の各API呼び出しに対する説明テキストを作成するために、GPT-4が使用される。
BERTはテキストの表現を得るために使われ、そこからAPIシーケンスの表現を導出します。
論文 参考訳(メタデータ) (2023-12-13T17:39:44Z) - Leveraging Large Language Models to Improve REST API Testing [51.284096009803406]
RESTGPTはAPI仕様を入力として、機械解釈可能なルールを抽出し、仕様内の自然言語記述からサンプルパラメータ値を生成する。
評価の結果、RESTGPTはルール抽出と値生成の両方において既存の技術よりも優れています。
論文 参考訳(メタデータ) (2023-12-01T19:53:23Z) - Adaptive REST API Testing with Reinforcement Learning [54.68542517176757]
現在のテストツールは効率的な探索機構がなく、全ての操作とパラメータを等しく扱う。
現在のツールは、仕様にレスポンススキーマがない場合や、変種を示す場合に苦労している。
我々は、強化学習を取り入れた適応型REST APIテスト手法を提案し、探索中の操作を優先順位付けする。
論文 参考訳(メタデータ) (2023-09-08T20:27:05Z) - EDEFuzz: A Web API Fuzzer for Excessive Data Exposures [3.5061201620029885]
Excessive Data Exposure(EDE)は2019年で3番目に重大なAPI脆弱性である。
このような問題を効果的に発見し、修正する自動化ツールが、研究や業界でもほとんどありません。
EDEFuzzと呼ばれる最初のファジィツールを構築し、EDEを体系的に検出します。
論文 参考訳(メタデータ) (2023-01-23T04:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。