Open Artificial Knowledge
- URL: http://arxiv.org/abs/2407.14371v1
- Date: Fri, 19 Jul 2024 15:01:24 GMT
- Title: Open Artificial Knowledge
- Authors: Vadim Borisov, Richard H. Schreiber,
- Abstract summary: We introduce the Open Artificial Knowledge (OAK) dataset, a large-scale resource of over 500 million tokens.
The OAK dataset aims to foster the development of more capable and aligned language models.
- Score: 3.187724439601991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tremendous success of chat-based AI systems like ChatGPT, Claude, and Gemini stems from Large Language Models (LLMs) trained on vast amount of datasets. However, acquiring high-quality, diverse, and ethically sourced training data remains a significant challenge. We introduce the Open Artificial Knowledge (OAK) dataset, a large-scale resource of over 500 million tokens (at the moment of writing) designed to address this issue. OAK leverages an ensemble of state-of-the-art LLMs, including GPT4o, LLaMa3-70B, LLaMa3-8B, Mixtral-8x7B, Gemma-7B, and Gemma-2-9B , to generate high-quality text across diverse domains, guided by Wikipedia's main categories. Our methodology ensures broad knowledge coverage while maintaining coherence and factual accuracy. The OAK dataset aims to foster the development of more capable and aligned language models while addressing critical issues of data scarcity and privacy in LLM training, and it is freely available on www.oakdataset.org.
Related papers
- Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
Large language models (LLMs) have emerged as a vibrant research topic.
LLMs face challenges in remembering events, incorporating new information, and addressing domain-specific issues or hallucinations.
This article proposes a method for automatically constructing a Knowledge Graph from multiple data sources.
arXiv Detail & Related papers (2024-04-14T16:34:31Z) - Second-Order Information Matters: Revisiting Machine Unlearning for Large Language Models [1.443696537295348]
Privacy leakage and copyright violation are still underexplored.
Our unlearning algorithms are not only data-agnostic/model-agnostic but also proven to be robust in terms of utility preservation or privacy guarantee.
arXiv Detail & Related papers (2024-03-13T18:57:30Z) - IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning
Datasets for Indian Languages [37.79850860981589]
This work introduces an expansive suite of resources specifically designed for the development of Indic LLMs.
Our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data.
For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models.
arXiv Detail & Related papers (2024-03-11T00:46:56Z) - Query of CC: Unearthing Large Scale Domain-Specific Knowledge from
Public Corpora [104.16648246740543]
We propose an efficient data collection method based on large language models.
The method bootstraps seed information through a large language model and retrieves related data from public corpora.
It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures.
arXiv Detail & Related papers (2024-01-26T03:38:23Z) - A Self-enhancement Approach for Domain-specific Chatbot Training via
Knowledge Mining and Digest [62.63606958140248]
Large Language Models (LLMs) often encounter challenges when dealing with intricate and knowledge-demanding queries in specific domains.
This paper introduces a novel approach to enhance LLMs by effectively extracting the relevant knowledge from domain-specific textual sources.
We train a knowledge miner, namely LLMiner, which autonomously extracts Question-Answer pairs from relevant documents.
arXiv Detail & Related papers (2023-11-17T16:09:10Z) - LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset [75.9621305227523]
We introduce LMSYS-Chat-1M, a large-scale dataset containing one million real-world conversations with 25 state-of-the-art large language models (LLMs)
This dataset is collected from 210K IP addresses in the wild on our Vicuna demo and Arena website.
We demonstrate its versatility through four use cases: developing content moderation models that perform similarly to GPT-4, building a safety benchmark, training instruction-following models that perform similarly to Vicuna, and creating challenging benchmark questions.
arXiv Detail & Related papers (2023-09-21T12:13:55Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - Enhancing Chat Language Models by Scaling High-quality Instructional
Conversations [91.98516412612739]
We first provide a systematically designed, diverse, informative, large-scale dataset of instructional conversations, UltraChat.
Our objective is to capture the breadth of interactions that a human might have with an AI assistant.
We fine-tune a LLaMA model to create a powerful conversational model, UltraLLaMA.
arXiv Detail & Related papers (2023-05-23T16:49:14Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.