Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation
- URL: http://arxiv.org/abs/2505.01456v1
- Date: Thu, 01 May 2025 01:54:00 GMT
- Title: Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation
- Authors: Vaidehi Patil, Yi-Lin Sung, Peter Hase, Jie Peng, Tianlong Chen, Mohit Bansal,
- Abstract summary: We introduce a multimodal unlearning benchmark, UnLOK-VQA, and an attack-and-defense framework to evaluate methods for deleting specific multimodal knowledge from MLLMs.<n>Our results show multimodal attacks outperform text- or image-only ones, and that the most effective defense removes answer information from internal model states.
- Score: 88.78166077081912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs trained on massive datasets may inadvertently acquire sensitive information such as personal details and potentially harmful content. This risk is further heightened in multimodal LLMs as they integrate information from multiple modalities (image and text). Adversaries can exploit this knowledge through multimodal prompts to extract sensitive details. Evaluating how effectively MLLMs can forget such information (targeted unlearning) necessitates the creation of high-quality, well-annotated image-text pairs. While prior work on unlearning has focused on text, multimodal unlearning remains underexplored. To address this gap, we first introduce a multimodal unlearning benchmark, UnLOK-VQA (Unlearning Outside Knowledge VQA), as well as an attack-and-defense framework to evaluate methods for deleting specific multimodal knowledge from MLLMs. We extend a visual question-answering dataset using an automated pipeline that generates varying-proximity samples for testing generalization and specificity, followed by manual filtering for maintaining high quality. We then evaluate six defense objectives against seven attacks (four whitebox, three blackbox), including a novel whitebox method leveraging interpretability of hidden states. Our results show multimodal attacks outperform text- or image-only ones, and that the most effective defense removes answer information from internal model states. Additionally, larger models exhibit greater post-editing robustness, suggesting that scale enhances safety. UnLOK-VQA provides a rigorous benchmark for advancing unlearning in MLLMs.
Related papers
- Con Instruction: Universal Jailbreaking of Multimodal Large Language Models via Non-Textual Modalities [76.9327488986162]
Existing attacks against multimodal language models (MLLMs) primarily communicate instructions through text accompanied by adversarial images.<n>We exploit the capabilities of MLLMs to interpret non-textual instructions, specifically, adversarial images or audio generated by our novel method, Con Instruction.<n>Our method achieves the highest attack success rates, reaching 81.3% and 86.6% on LLaVA-v1.5 (13B)
arXiv Detail & Related papers (2025-05-31T13:11:14Z) - Membership Inference Attacks Against Vision-Language Models [24.47069867575367]
Vision-Language Models (VLMs) have shown exceptional multi-modal understanding and dialog capabilities.<n>Risks of data misuse and leakage have been largely unexplored.<n>We propose four membership inference methods, each tailored to different levels of background knowledge.
arXiv Detail & Related papers (2025-01-27T05:44:58Z) - Seeing is Deceiving: Exploitation of Visual Pathways in Multi-Modal Language Models [0.0]
Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data.
Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses.
This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies.
arXiv Detail & Related papers (2024-11-07T16:21:18Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
arXiv Detail & Related papers (2024-07-31T15:02:46Z) - MLLM Is a Strong Reranker: Advancing Multimodal Retrieval-augmented Generation via Knowledge-enhanced Reranking and Noise-injected Training [9.023648972811458]
RagVL is a novel framework with knowledge-enhanced reranking and noise-injected training.
We instruction-tune the MLLM with a simple yet effective instruction template to induce its ranking ability.
For generation, we inject visual noise during training at the data and token levels to enhance the generator's robustness.
arXiv Detail & Related papers (2024-07-31T08:43:17Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
We introduce Bundle-MLLM, a novel framework that fine-tunes large language models (LLMs) through a hybrid item tokenization approach.<n>Specifically, we integrate textual, media, and relational data into a unified tokenization, introducing a soft separation token to distinguish between textual and non-textual tokens.<n>We propose a progressive optimization strategy that fine-tunes LLMs for disentangled objectives: 1) learning bundle patterns and 2) enhancing multimodal semantic understanding specific to product bundling.
arXiv Detail & Related papers (2024-07-16T13:30:14Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction.
Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul) with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset.
arXiv Detail & Related papers (2024-06-09T19:18:05Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.<n>Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.<n>We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.