SCoPE: Evaluating LLMs for Software Vulnerability Detection
- URL: http://arxiv.org/abs/2407.14372v1
- Date: Fri, 19 Jul 2024 15:02:00 GMT
- Title: SCoPE: Evaluating LLMs for Software Vulnerability Detection
- Authors: José Gonçalves, Tiago Dias, Eva Maia, Isabel Praça,
- Abstract summary: This work explores and refines the CVEFixes dataset, which is commonly used to train models for code-related tasks.
The output generated by SCoPE was used to create a new version of CVEFixes.
The results show that SCoPE successfully helped to identify 905 duplicates within the evaluated subset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, code security has become increasingly important, especially with the rise of interconnected technologies. Detecting vulnerabilities early in the software development process has demonstrated numerous benefits. Consequently, the scientific community started using machine learning for automated detection of source code vulnerabilities. This work explores and refines the CVEFixes dataset, which is commonly used to train models for code-related tasks, specifically the C/C++ subset. To this purpose, the Source Code Processing Engine (SCoPE), a framework composed of strategized techniques that can be used to reduce the size and normalize C/C++ functions is presented. The output generated by SCoPE was used to create a new version of CVEFixes. This refined dataset was then employed in a feature representation analysis to assess the effectiveness of the tool's code processing techniques, consisting of fine-tuning three pre-trained LLMs for software vulnerability detection. The results show that SCoPE successfully helped to identify 905 duplicates within the evaluated subset. The LLM results corroborate with the literature regarding their suitability for software vulnerability detection, with the best model achieving 53% F1-score.
Related papers
- HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
Large language models (LLMs) have shown great potential for automatic code generation.
Recent studies highlight that many LLM-generated code contains serious security vulnerabilities.
We introduce HexaCoder, a novel approach to enhance the ability of LLMs to generate secure codes.
arXiv Detail & Related papers (2024-09-10T12:01:43Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
This paper thoroughly analyses large language models' capabilities in detecting vulnerabilities within source code.
We evaluate the performance of six open-source models that are specifically trained for vulnerability detection against six general-purpose LLMs.
arXiv Detail & Related papers (2024-08-29T10:00:57Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization.
Code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages.
This paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) to improve the detection accuracy of code models.
arXiv Detail & Related papers (2024-06-10T00:05:49Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction.
Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul) with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset.
arXiv Detail & Related papers (2024-06-09T19:18:05Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
We propose using large language models (LLMs) to assist in finding vulnerabilities in source code.
The aim is to test multiple state-of-the-art LLMs and identify the best prompting strategies.
We find that LLMs can pinpoint many more issues than traditional static analysis tools, outperforming traditional tools in terms of recall and F1 scores.
arXiv Detail & Related papers (2024-05-24T14:59:19Z) - VULNERLIZER: Cross-analysis Between Vulnerabilities and Software
Libraries [4.2755847332268235]
VULNERLIZER is a novel framework for cross-analysis between vulnerabilities and software libraries.
It uses CVE and software library data together with clustering algorithms to generate links between vulnerabilities and libraries.
The trained model reaches a prediction accuracy of 75% or higher.
arXiv Detail & Related papers (2023-09-18T10:34:47Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
We propose a deep learning model that learns to detect some of the common categories of security vulnerabilities in source code efficiently.
The model builds an accurate understanding of code semantics with a lot less learnable parameters.
The proposed AI achieves 98.40% F1-score on specific CWEs from the benchmarked NIST SARD dataset.
arXiv Detail & Related papers (2021-04-19T11:50:36Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.