Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification
- URL: http://arxiv.org/abs/2104.09225v1
- Date: Mon, 19 Apr 2021 11:50:36 GMT
- Title: Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification
- Authors: Anshul Tanwar, Hariharan Manikandan, Krishna Sundaresan, Prasanna
Ganesan, Sathish Kumar Chandrasekaran, Sriram Ravi
- Abstract summary: We propose a deep learning model that learns to detect some of the common categories of security vulnerabilities in source code efficiently.
The model builds an accurate understanding of code semantics with a lot less learnable parameters.
The proposed AI achieves 98.40% F1-score on specific CWEs from the benchmarked NIST SARD dataset.
- Score: 4.05739885420409
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Security issues in shipped code can lead to unforeseen device malfunction,
system crashes or malicious exploitation by crackers, post-deployment. These
vulnerabilities incur a cost of repair and foremost risk the credibility of the
company. It is rewarding when these issues are detected and fixed well ahead of
time, before release. Common Weakness Estimation (CWE) is a nomenclature
describing general vulnerability patterns observed in C code. In this work, we
propose a deep learning model that learns to detect some of the common
categories of security vulnerabilities in source code efficiently. The AI
architecture is an Attention Fusion model, that combines the effectiveness of
recurrent, convolutional and self-attention networks towards decoding the
vulnerability hotspots in code. Utilizing the code AST structure, our model
builds an accurate understanding of code semantics with a lot less learnable
parameters. Besides a novel way of efficiently detecting code vulnerability, an
additional novelty in this model is to exactly point to the code sections,
which were deemed vulnerable by the model. Thus helping a developer to quickly
focus on the vulnerable code sections; and this becomes the "explainable" part
of the vulnerability detection. The proposed AI achieves 98.40% F1-score on
specific CWEs from the benchmarked NIST SARD dataset and compares well with
state of the art.
Related papers
- HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
Large language models (LLMs) have shown great potential for automatic code generation.
Recent studies highlight that many LLM-generated code contains serious security vulnerabilities.
We introduce HexaCoder, a novel approach to enhance the ability of LLMs to generate secure codes.
arXiv Detail & Related papers (2024-09-10T12:01:43Z) - LLM-Enhanced Static Analysis for Precise Identification of Vulnerable OSS Versions [12.706661324384319]
Open-source software (OSS) has experienced a surge in popularity, attributed to its collaborative development model and cost-effective nature.
The adoption of specific software versions in development projects may introduce security risks when these versions bring along vulnerabilities.
Current methods of identifying vulnerable versions typically analyze and trace the code involved in vulnerability patches using static analysis with pre-defined rules.
This paper presents Vercation, an approach designed to identify vulnerable versions of OSS written in C/C++.
arXiv Detail & Related papers (2024-08-14T06:43:06Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
We introduce a multipurpose code vulnerability analysis system textttSecRepair, powered by a large language model, CodeGen2.
Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs.
We identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub.
arXiv Detail & Related papers (2024-01-07T02:46:39Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINER is a tool for locating vulnerability-critical code lines from coarse-level vulnerable code snippets.
It can flag the vulnerability-triggering code statements with an accuracy of around 90% against eight common C/C++ vulnerabilities.
arXiv Detail & Related papers (2024-01-05T10:15:04Z) - Transformer-based Vulnerability Detection in Code at EditTime:
Zero-shot, Few-shot, or Fine-tuning? [5.603751223376071]
We present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns.
We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%.
arXiv Detail & Related papers (2023-05-23T01:21:55Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - DCDetector: An IoT terminal vulnerability mining system based on
distributed deep ensemble learning under source code representation [2.561778620560749]
The goal of the research is to intelligently detect vulnerabilities in source codes of high-level languages such as C/C++.
This enables us to propose a code representation of sensitive sentence-related slices of source code, and to detect vulnerabilities by designing a distributed deep ensemble learning model.
Experiments show that this method can reduce the false positive rate of traditional static analysis and improve the performance and accuracy of machine learning.
arXiv Detail & Related papers (2022-11-29T14:19:14Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.