論文の概要: DEAL: Disentangle and Localize Concept-level Explanations for VLMs
- arxiv url: http://arxiv.org/abs/2407.14412v1
- Date: Fri, 19 Jul 2024 15:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:05:24.130677
- Title: DEAL: Disentangle and Localize Concept-level Explanations for VLMs
- Title(参考訳): DEAL: VLM の概念レベル記述の分離とローカライズ
- Authors: Tang Li, Mengmeng Ma, Xi Peng,
- Abstract要約: 大きな訓練済みのビジョンランゲージモデルでは、きめ細かい概念を特定できないかもしれない。
本研究では,人間のアノテーションを使わずに概念のDisEnt and Localize(アングル)概念レベルの説明を提案する。
実験結果から,提案手法はモデルの概念レベルの説明を,不整合性と局所性の観点から著しく改善することを示した。
- 参考スコア(独自算出の注目度): 10.397502254316645
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large pre-trained Vision-Language Models (VLMs) have become ubiquitous foundational components of other models and downstream tasks. Although powerful, our empirical results reveal that such models might not be able to identify fine-grained concepts. Specifically, the explanations of VLMs with respect to fine-grained concepts are entangled and mislocalized. To address this issue, we propose to DisEntAngle and Localize (DEAL) the concept-level explanations for VLMs without human annotations. The key idea is encouraging the concept-level explanations to be distinct while maintaining consistency with category-level explanations. We conduct extensive experiments and ablation studies on a wide range of benchmark datasets and vision-language models. Our empirical results demonstrate that the proposed method significantly improves the concept-level explanations of the model in terms of disentanglability and localizability. Surprisingly, the improved explainability alleviates the model's reliance on spurious correlations, which further benefits the prediction accuracy.
- Abstract(参考訳): 大規模な事前訓練されたビジョンランゲージモデル(VLM)は、他のモデルや下流タスクのユビキタスな基盤コンポーネントとなっている。
強力ではあるが、我々の経験的結果は、そのようなモデルがきめ細かい概念を識別できないかもしれないことを明らかにしている。
特に、微細な概念に関するVLMの説明は絡み合っており、非局在化されている。
この問題に対処するために,人間のアノテーションを使わずにVLMの概念レベルの説明を行うDisEntAngle and Localize (DEAL)を提案する。
鍵となる考え方は、カテゴリレベルの説明との整合性を維持しながら、概念レベルの説明を区別することを奨励することである。
我々は、幅広いベンチマークデータセットと視覚言語モデルに関する広範な実験とアブレーション研究を行っている。
実験結果から,提案手法はモデルの概念レベルの説明を,不整合性と局所性の観点から著しく改善することを示した。
驚くべきことに、改良された説明可能性により、モデルが急激な相関に依存することが軽減され、予測精度がさらに向上する。
関連論文リスト
- VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - On the Tip of the Tongue: Analyzing Conceptual Representation in Large
Language Models with Reverse-Dictionary Probe [36.65834065044746]
我々は、言語記述に暗示される対象概念の用語を生成するために、文脈内学習を用いてモデルを誘導する。
実験結果から,逆ディファレンシャルタスクによって探索された概念推論能力は,モデルの一般的な推論性能を予測することが示唆された。
論文 参考訳(メタデータ) (2024-02-22T09:45:26Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
概念ベースの解釈可能性手法をNLPに拡張するための完全なフレームワークを提案する。
出力予測が大幅に変化する特徴を最適化する。
本手法は, ベースラインと比較して, 予測的影響, ユーザビリティ, 忠実度に関する優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T14:48:27Z) - Benchmarking Faithfulness: Towards Accurate Natural Language
Explanations in Vision-Language Tasks [0.0]
自然言語の説明(NLE)は、モデルの意思決定を容易に理解可能な方法でコミュニケーション可能にすることを約束する。
現在のモデルは説得力のある説明をうまく生成するが、NLEが実際にモデルの推論過程をいかにうまく表現しているかは未解決の問題である。
帰属相似性(Atribution-Similarity)、NLE-Sufficiency(NLE-Sufficiency)、NLE-Comprehensiveness(NLE-Comprehensiveness)の3つの忠実度指標を提案する。
論文 参考訳(メタデータ) (2023-04-03T08:24:10Z) - Right for the Right Concept: Revising Neuro-Symbolic Concepts by
Interacting with their Explanations [24.327862278556445]
本稿では,意味レベルでのモデル修正を可能にするニューロ・シンボリックシーン表現を提案する。
CLEVR-Hansの実験の結果は、私たちのセマンティックな説明が共同創設者を識別できることを示しています。
論文 参考訳(メタデータ) (2020-11-25T16:23:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。