HOTS3D: Hyper-Spherical Optimal Transport for Semantic Alignment of Text-to-3D Generation
- URL: http://arxiv.org/abs/2407.14419v1
- Date: Fri, 19 Jul 2024 15:43:24 GMT
- Title: HOTS3D: Hyper-Spherical Optimal Transport for Semantic Alignment of Text-to-3D Generation
- Authors: Zezeng Li, Weimin Wang, WenHai Li, Na Lei, Xianfeng Gu,
- Abstract summary: Recent CLIP-guided 3D generation methods have achieved promising results but struggle with generating faithful 3D shapes that conform with input text.
This paper proposes HOTS3D which makes the first attempt to effectively bridge this gap by aligning text features to the image features with spherical optimal transport (SOT)
With the optimally mapped features, a diffusion-based generator and a Nerf-based decoder are subsequently utilized to transform them into 3D shapes.
- Score: 15.34704512558617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent CLIP-guided 3D generation methods have achieved promising results but struggle with generating faithful 3D shapes that conform with input text due to the gap between text and image embeddings. To this end, this paper proposes HOTS3D which makes the first attempt to effectively bridge this gap by aligning text features to the image features with spherical optimal transport (SOT). However, in high-dimensional situations, solving the SOT remains a challenge. To obtain the SOT map for high-dimensional features obtained from CLIP encoding of two modalities, we mathematically formulate and derive the solution based on Villani's theorem, which can directly align two hyper-sphere distributions without manifold exponential maps. Furthermore, we implement it by leveraging input convex neural networks (ICNNs) for the optimal Kantorovich potential. With the optimally mapped features, a diffusion-based generator and a Nerf-based decoder are subsequently utilized to transform them into 3D shapes. Extensive qualitative and qualitative comparisons with state-of-the-arts demonstrate the superiority of the proposed HOTS3D for 3D shape generation, especially on the consistency with text semantics.
Related papers
- LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting [9.383423119196408]
We introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing multi-view diffusion models.
MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation.
In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations.
arXiv Detail & Related papers (2024-03-15T02:57:20Z) - TPA3D: Triplane Attention for Fast Text-to-3D Generation [28.33270078863519]
We propose Triplane Attention for text-guided 3D generation (TPA3D)
TPA3D is an end-to-end trainable GAN-based deep learning model for fast text-to-3D generation.
We show that TPA3D generates high-quality 3D textured shapes aligned with fine-grained descriptions.
arXiv Detail & Related papers (2023-12-05T10:39:37Z) - EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Prior [59.25950280610409]
We propose a robust high-quality 3D content generation pipeline by exploiting orthogonal-view image guidance.
In this paper, we introduce a novel 2D diffusion model that generates an image consisting of four sub-images based on the given text prompt.
We also present a 3D synthesis network that can further improve the details of the generated 3D contents.
arXiv Detail & Related papers (2023-08-25T07:39:26Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text
Aligned Latent Representation [47.945556996219295]
We present a novel alignment-before-generation approach to generate 3D shapes based on 2D images or texts.
Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM)
arXiv Detail & Related papers (2023-06-29T17:17:57Z) - TAPS3D: Text-Guided 3D Textured Shape Generation from Pseudo Supervision [114.56048848216254]
We present a novel framework, TAPS3D, to train a text-guided 3D shape generator with pseudo captions.
Based on rendered 2D images, we retrieve relevant words from the CLIP vocabulary and construct pseudo captions using templates.
Our constructed captions provide high-level semantic supervision for generated 3D shapes.
arXiv Detail & Related papers (2023-03-23T13:53:16Z) - 3D Dense Face Alignment with Fused Features by Aggregating CNNs and GCNs [28.7443367565456]
This is achieved by seamlessly combining standard convolutional neural networks (CNNs) with Graph Convolution Networks (GCNs)
By iteratively fusing the features across different layers and stages of the CNNs and GCNs, our approach can provide a dense face alignment and 3D face reconstruction simultaneously.
Experiments on several challenging datasets demonstrate that our method outperforms state-of-the-art approaches on both 2D and 3D face alignment tasks.
arXiv Detail & Related papers (2022-03-09T11:07:10Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTet is a conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels.
Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology.
arXiv Detail & Related papers (2021-11-08T05:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.