MLMT-CNN for Object Detection and Segmentation in Multi-layer and Multi-spectral Images
- URL: http://arxiv.org/abs/2407.14473v1
- Date: Fri, 19 Jul 2024 17:21:53 GMT
- Title: MLMT-CNN for Object Detection and Segmentation in Multi-layer and Multi-spectral Images
- Authors: Majedaldein Almahasneh, Adeline Paiement, Xianghua Xie, Jean Aboudarham,
- Abstract summary: We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR localisation.
Our framework achieves an average of 0.72 IoU (segmentation) and 0.90 F1 score (detection) across all modalities.
- Score: 4.2623421577291225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precisely localising solar Active Regions (AR) from multi-spectral images is a challenging but important task in understanding solar activity and its influence on space weather. A main challenge comes from each modality capturing a different location of the 3D objects, as opposed to typical multi-spectral imaging scenarios where all image bands observe the same scene. Thus, we refer to this special multi-spectral scenario as multi-layer. We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR localisation (segmentation and detection) where different image bands (and physical locations) have their own set of results. Furthermore, to address the difficulty of producing dense AR annotations for training supervised machine learning (ML) algorithms, we adapt a training strategy based on weak labels (i.e. bounding boxes) in a recursive manner. We compare our detection and segmentation stages against baseline approaches for solar image analysis (multi-channel coronal hole detection, SPOCA for ARs) and state-of-the-art deep learning methods (Faster RCNN, U-Net). Additionally, both detection a nd segmentation stages are quantitatively validated on artificially created data of similar spatial configurations made from annotated multi-modal magnetic resonance images. Our framework achieves an average of 0.72 IoU (segmentation) and 0.90 F1 score (detection) across all modalities, comparing to the best performing baseline methods with scores of 0.53 and 0.58, respectively, on the artificial dataset, and 0.84 F1 score in the AR detection task comparing to baseline of 0.82 F1 score. Our segmentation results are qualitatively validated by an expert on real ARs.
Related papers
- Change Detection Between Optical Remote Sensing Imagery and Map Data via
Segment Anything Model (SAM) [20.985372561774415]
We explore unsupervised multimodal change detection between two key remote sensing data sources: optical high-resolution imagery and OpenStreetMap (OSM) data.
We introduce two strategies for guiding SAM's segmentation process: the 'no-prompt' and 'box/mask prompt' methods.
Experimental results on three datasets indicate that the proposed approach can achieve more competitive results.
arXiv Detail & Related papers (2024-01-17T07:30:52Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Exchange means change: an unsupervised single-temporal change detection
framework based on intra- and inter-image patch exchange [44.845959222180866]
We propose an unsupervised single-temporal CD framework based on intra- and inter-image patch exchange (I3PE)
The I3PE framework allows for training deep change detectors on unpaired and unlabeled single-temporal remote sensing images.
I3PE outperforms representative unsupervised approaches and achieves F1 value improvements of 10.65% and 6.99% to the SOTA method.
arXiv Detail & Related papers (2023-10-01T14:50:54Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world.
Previous approaches design different networks on similar tasks separately, and they are difficult to apply to each other.
We introduce a unified framework to tackle these issues, term as UFO (UnifiedObject Framework for Co-Object Framework)
arXiv Detail & Related papers (2022-03-09T13:35:19Z) - Learning Collision-Free Space Detection from Stereo Images: Homography
Matrix Brings Better Data Augmentation [16.99302954185652]
It remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples.
This paper explores an effective training data augmentation approach that can be employed to improve the overall DCNN performance.
arXiv Detail & Related papers (2020-12-14T19:14:35Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
We propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training.
We show that our approach outperforms state-of-the-art self-supervised person detection and segmentation techniques on images that visually depart from those of standard benchmarks.
arXiv Detail & Related papers (2020-12-09T15:47:21Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.