Learning Collision-Free Space Detection from Stereo Images: Homography
Matrix Brings Better Data Augmentation
- URL: http://arxiv.org/abs/2012.07890v3
- Date: Fri, 12 Mar 2021 21:22:09 GMT
- Title: Learning Collision-Free Space Detection from Stereo Images: Homography
Matrix Brings Better Data Augmentation
- Authors: Rui Fan, Hengli Wang, Peide Cai, Jin Wu, Mohammud Junaid Bocus, Lei
Qiao and Ming Liu
- Abstract summary: It remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples.
This paper explores an effective training data augmentation approach that can be employed to improve the overall DCNN performance.
- Score: 16.99302954185652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collision-free space detection is a critical component of autonomous vehicle
perception. The state-of-the-art algorithms are typically based on supervised
learning. The performance of such approaches is always dependent on the quality
and amount of labeled training data. Additionally, it remains an open challenge
to train deep convolutional neural networks (DCNNs) using only a small quantity
of training samples. Therefore, this paper mainly explores an effective
training data augmentation approach that can be employed to improve the overall
DCNN performance, when additional images captured from different views are
available. Due to the fact that the pixels of the collision-free space
(generally regarded as a planar surface) between two images captured from
different views can be associated by a homography matrix, the scenario of the
target image can be transformed into the reference view. This provides a simple
but effective way of generating training data from additional multi-view
images. Extensive experimental results, conducted with six state-of-the-art
semantic segmentation DCNNs on three datasets, demonstrate the effectiveness of
our proposed training data augmentation algorithm for enhancing collision-free
space detection performance. When validated on the KITTI road benchmark, our
approach provides the best results for stereo vision-based collision-free space
detection.
Related papers
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - Attention Mechanism for Contrastive Learning in GAN-based Image-to-Image
Translation [3.90801108629495]
We propose a GAN-based model that is capable of generating high-quality images across different domains.
We leverage Contrastive Learning to train the model in a self-supervised way using image data acquired in the real world using real sensors and simulated images from 3D games.
arXiv Detail & Related papers (2023-02-23T14:23:23Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.