NNsight and NDIF: Democratizing Access to Foundation Model Internals
- URL: http://arxiv.org/abs/2407.14561v1
- Date: Thu, 18 Jul 2024 17:59:01 GMT
- Title: NNsight and NDIF: Democratizing Access to Foundation Model Internals
- Authors: Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, Jannik Brinkmann, Caden Juang, Koyena Pal, Can Rager, Aaron Mueller, Samuel Marks, Arnab Sen Sharma, Francesca Lucchetti, Michael Ripa, Adam Belfki, Nikhil Prakash, Sumeet Multani, Carla Brodley, Arjun Guha, Jonathan Bell, Byron Wallace, David Bau,
- Abstract summary: NNsight is an open-source Python package with a simple, flexible API that can express interventions on any PyTorch model by building graphs.
NDIF is a collaborative research platform providing researchers access to foundation-scale LLMs via the NNsight API.
- Score: 48.27939917017487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The enormous scale of state-of-the-art foundation models has limited their accessibility to scientists, because customized experiments at large model sizes require costly hardware and complex engineering that is impractical for most researchers. To alleviate these problems, we introduce NNsight, an open-source Python package with a simple, flexible API that can express interventions on any PyTorch model by building computation graphs. We also introduce NDIF, a collaborative research platform providing researchers access to foundation-scale LLMs via the NNsight API. Code, documentation, and tutorials are available at https://www.nnsight.net.
Related papers
- pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$ is an open-source library that supports customizable interventions on a range of different PyTorch modules.
We show how $textbfpyvene$ provides a unified framework for performing interventions on neural models and sharing the intervened upon models with others.
arXiv Detail & Related papers (2024-03-12T16:46:54Z) - DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows [72.40917624485822]
We introduce DataDreamer, an open source Python library that allows researchers to implement powerful large language models.
DataDreamer also helps researchers adhere to best practices that we propose to encourage open science.
arXiv Detail & Related papers (2024-02-16T00:10:26Z) - ModelScope-Agent: Building Your Customizable Agent System with
Open-source Large Language Models [74.64651681052628]
We introduce ModelScope-Agent, a customizable agent framework for real-world applications based on open-source LLMs as controllers.
It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs.
A comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation.
arXiv Detail & Related papers (2023-09-02T16:50:30Z) - nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales [65.01417261415833]
We present an approach to predict the pre-training loss based on our observations that Maximal Update Parametrization (muP) enables accurate fitting of scaling laws.
With around 14% of the one-time pre-training cost, we can accurately forecast the loss for models up to 52B.
Our goal with nanoLM is to empower researchers with limited resources to reach meaningful conclusions on large models.
arXiv Detail & Related papers (2023-04-14T00:45:01Z) - DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs in Life
Science [5.3825788156200565]
We present DGL-LifeSci, an open-source package for deep learning on graphs in life science.
DGL-LifeSci is a python toolkit based on RDKit, PyTorch and Deep Graph Library.
It allows GNN-based modeling on custom datasets for molecular property prediction, reaction prediction and molecule generation.
arXiv Detail & Related papers (2021-06-27T13:27:47Z) - PyHealth: A Python Library for Health Predictive Models [53.848478115284195]
PyHealth is an open-source Python toolbox for developing various predictive models on healthcare data.
The data preprocessing module enables the transformation of complex healthcare datasets into machine learning friendly formats.
The predictive modeling module provides more than 30 machine learning models, including established ensemble trees and deep neural network-based approaches.
arXiv Detail & Related papers (2021-01-11T22:02:08Z) - Minimum Viable Model Estimates for Machine Learning Projects [0.0]
We present a technique for estimating the minimum required performance characteristics of a predictive model.
The technique has been implemented into the open source application MinViME.
arXiv Detail & Related papers (2021-01-02T01:01:20Z) - Direct Federated Neural Architecture Search [0.0]
We present an effective approach for direct federated NAS which is hardware agnostic, computationally lightweight, and a one-stage method to search for ready-to-deploy neural network models.
Our results show an order of magnitude reduction in resource consumption while edging out prior art in accuracy.
arXiv Detail & Related papers (2020-10-13T08:11:35Z) - PHOTONAI -- A Python API for Rapid Machine Learning Model Development [2.414341608751139]
PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning model development.
It functions as a unifying framework allowing the user to easily access and combine algorithms from different toolboxes into custom algorithm sequences.
arXiv Detail & Related papers (2020-02-13T10:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.