NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals
- URL: http://arxiv.org/abs/2407.14561v3
- Date: Fri, 03 Jan 2025 16:06:56 GMT
- Title: NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals
- Authors: Jaden Fiotto-Kaufman, Alexander R. Loftus, Eric Todd, Jannik Brinkmann, Koyena Pal, Dmitrii Troitskii, Michael Ripa, Adam Belfki, Can Rager, Caden Juang, Aaron Mueller, Samuel Marks, Arnab Sen Sharma, Francesca Lucchetti, Nikhil Prakash, Carla Brodley, Arjun Guha, Jonathan Bell, Byron C. Wallace, David Bau,
- Abstract summary: We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of very large neural networks.
NNsight is an open-source system that extends PyTorch to introduce deferred remote execution.
NDIF is a scalable inference service that executes NNsight requests, allowing users to share GPU resources and pretrained models.
- Score: 58.83169560132308
- License:
- Abstract: We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of very large neural networks. NNsight is an open-source system that extends PyTorch to introduce deferred remote execution. NDIF is a scalable inference service that executes NNsight requests, allowing users to share GPU resources and pretrained models. These technologies are enabled by the intervention graph, an architecture developed to decouple experiment design from model runtime. Together, this framework provides transparent and efficient access to the internals of deep neural networks such as very large language models (LLMs) without imposing the cost or complexity of hosting customized models individually. We conduct a quantitative survey of the machine learning literature that reveals a growing gap in the study of the internals of large-scale AI. We demonstrate the design and use of our framework to address this gap by enabling a range of research methods on huge models. Finally, we conduct benchmarks to compare performance with previous approaches. Code documentation, and materials are available at https://nnsight.net/.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
The purpose of the study is to analyse and compare the most common machine learning and deep learning techniques used for computer vision 2D object classification tasks.
Firstly, we will present the theoretical background of the Bag of Visual words model and Deep Convolutional Neural Networks (DCNN)
Secondly, we will implement a Bag of Visual Words model, the VGG16 CNN Architecture.
arXiv Detail & Related papers (2022-04-11T11:34:43Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - Understanding Neural Code Intelligence Through Program Simplification [3.9704927572880253]
We propose a model-agnostic approach to identify critical input features for models in code intelligence systems.
Our approach, SIVAND, uses simplification techniques that reduce the size of input programs of a CI model.
We believe that SIVAND's extracted features may help understand neural CI systems' predictions and learned behavior.
arXiv Detail & Related papers (2021-06-07T05:44:29Z) - Tidying Deep Saliency Prediction Architectures [6.613005108411055]
In this paper, we identify four key components of saliency models, i.e., input features, multi-level integration, readout architecture, and loss functions.
We propose two novel end-to-end architectures called SimpleNet and MDNSal, which are neater, minimal, more interpretable and achieve state of the art performance on public saliency benchmarks.
arXiv Detail & Related papers (2020-03-10T19:34:49Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.