DanceQ: High-performance library for number conserving bases
- URL: http://arxiv.org/abs/2407.14591v1
- Date: Fri, 19 Jul 2024 18:00:01 GMT
- Title: DanceQ: High-performance library for number conserving bases
- Authors: Robin Schäfer, David J. Luitz,
- Abstract summary: We present an elegant and powerful, multi-dimensional approach to the $U(1)$ symmetry appearing in problems with particle number conservation.
Our divide-and-conquer algorithm uses multiple subsystems and hence generalizes previous approaches to make them scalable.
In addition to the theoretical presentation of our algorithm, we provide DanceQ, a flexible and modern - header only - C++20 implementation to manipulate, enumerate, and map to its index any basis state in a given particle number sector.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity of quantum many-body problems scales exponentially with the size of the system, rendering any finite size scaling analysis a formidable challenge. This is particularly true for methods based on the full representation of the wave function, where one simply accepts the enormous Hilbert space dimensions and performs linear algebra operations, e.g., for finding the ground state of the Hamiltonian. If the system satisfies an underlying symmetry where an operator with degenerate spectrum commutes with the Hamiltonian, it can be block-diagonalized, thus reducing the complexity at the expense of additional bookkeeping. At the most basic level, required for Krylov space techniques (like the Lanczos algorithm) it is necessary to implement a matrix-vector product of a block of the Hamiltonian with arbitrary block-wavefunctions, potentially without holding the Hamiltonian block in memory. An efficient implementation of this operation requires the calculation of the position of an arbitrary basis vector in the canonical ordering of the basis of the block. We present here an elegant and powerful, multi-dimensional approach to this problem for the $U(1)$ symmetry appearing in problems with particle number conservation. Our divide-and-conquer algorithm uses multiple subsystems and hence generalizes previous approaches to make them scalable. In addition to the theoretical presentation of our algorithm, we provide DanceQ, a flexible and modern - header only - C++20 implementation to manipulate, enumerate, and map to its index any basis state in a given particle number sector as open source software under https://DanceQ.gitlab.io/danceq.
Related papers
- Quantum random power method for ground state computation [0.0]
We present a quantum-classical hybrid random power method that approximates a Hamiltonian.
We numerically validate this sparsity condition for well-known model Hamiltonians.
arXiv Detail & Related papers (2024-08-16T06:41:16Z) - A quantum-classical hybrid algorithm with Ising model for the learning with errors problem [13.06030390635216]
We propose a quantum-classical hybrid algorithm with Ising model (HAWI) to address the Learning-With-Errors (LWE) problem.
We identify the low-energy levels of the Hamiltonian to extract the solution, making it suitable for implementation on current noisy intermediate-scale quantum (NISQ) devices.
Our algorithm is iterations, and its time complexity depends on the specific quantum algorithm employed to find the Hamiltonian's low-energy levels.
arXiv Detail & Related papers (2024-08-15T05:11:35Z) - QuOp: A Quantum Operator Representation for Nodes [0.0]
We derive an intuitive and novel method to represent nodes in a graph with quantum operators.
This method does not require parameter training and is competitive with classical methods on scoring similarity between nodes.
arXiv Detail & Related papers (2024-07-19T13:10:04Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Pymablock: an algorithm and a package for quasi-degenerate perturbation theory [0.0]
We introduce an equivalent effective Hamiltonian as well as a Python package, Pymablock, that implements it.
Our algorithm combines an optimal scaling and the ability to handle any number of subspaces with a range of other improvements.
We demonstrate how the package handles constructing a k.p model, analyses a superconducting qubit, and computes the low-energy spectrum of a large tight-binding model.
arXiv Detail & Related papers (2024-04-04T18:00:08Z) - Purely quantum algorithms for calculating determinant and inverse of matrix and solving linear algebraic systems [43.53835128052666]
We propose quantum algorithms for the computation of the determinant and inverse of an $(N-1) times (N-1)$ matrix.
This approach is a straightforward modification of the existing algorithm for determining the determinant of an $N times N$ matrix.
We provide suitable circuit designs for all three algorithms, each estimated to require $O(N log N)$ in terms of space.
arXiv Detail & Related papers (2024-01-29T23:23:27Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for
Multi-Block Bilevel Optimization [43.74656748515853]
Non-stationary multi-block bilevel optimization problems involve $mgg 1$ lower level problems and have important applications in machine learning.
We aim to achieve three properties for our algorithm: a) matching the state-of-the-art complexity of standard BO problems with a single block; (b) achieving parallel speedup by sampling $I$ samples for each sampled block per-iteration; and (c) avoiding the computation of the inverse of a high-dimensional Hessian matrix estimator.
arXiv Detail & Related papers (2023-05-30T04:10:11Z) - A quantum algorithm for solving eigenproblem of the Laplacian matrix of
a fully connected weighted graph [4.045204834863644]
We propose an efficient quantum algorithm to solve the eigenproblem of the Laplacian matrix of a fully connected weighted graph.
Specifically, we adopt the optimal Hamiltonian simulation technique based on the block-encoding framework.
We also show that our algorithm can be extended to solve the eigenproblem of symmetric (non-symmetric) normalized Laplacian matrix.
arXiv Detail & Related papers (2022-03-28T02:24:08Z) - Variational quantum solutions to the Shortest Vector Problem [6.126929553818864]
Shortest Vector Problem (SVP) is a problem known as the Shortest Vector Problem (SVP)
This problem is believed to be hard even on quantum computers and plays a pivotal role in post-quantum cryptography.
In this work we explore how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP.
arXiv Detail & Related papers (2022-02-14T14:27:38Z) - Near-Optimal Algorithms for Linear Algebra in the Current Matrix
Multiplication Time [46.31710224483631]
We show how to bypass the main open question of Nelson and Nguyen (FOCS, 2013) regarding the logarithmic factors in the sketching dimension for existing constant factor approximation oblivious subspace embeddings.
A key technique we use is an explicit mapping of Indyk based on uncertainty principles and extractors.
For the fundamental problems of rank computation and finding a linearly independent subset of columns, our algorithms improve Cheung, Kwok, and Lau (JACM, 2013) and are optimal to within a constant factor and a $loglog(n)$-factor, respectively.
arXiv Detail & Related papers (2021-07-16T19:34:10Z) - Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and
Costs [45.87981728307819]
The ability to compare and align related datasets living in heterogeneous spaces plays an increasingly important role in machine learning.
The Gromov-Wasserstein (GW) formalism can help tackle this problem.
arXiv Detail & Related papers (2021-06-02T12:50:56Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.