論文の概要: The Research of Group Re-identification from Multiple Cameras
- arxiv url: http://arxiv.org/abs/2407.14620v1
- Date: Fri, 19 Jul 2024 18:28:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 21:43:34.169159
- Title: The Research of Group Re-identification from Multiple Cameras
- Title(参考訳): 複数カメラからのグループ再識別に関する研究
- Authors: Hao Xiao,
- Abstract要約: グループ再識別は、従来の再識別タスクにおいて、視点や人間のポーズのバリエーションによって妨げられているだけでなく、非常に難しい。
本稿では,グループ内の多粒度情報を活用してグループ再同定を容易にする手法を提案する。
- 参考スコア(独自算出の注目度): 0.4955551943523977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object re-identification is of increasing importance in visual surveillance. Most existing works focus on re-identify individual from multiple cameras while the application of group re-identification (Re-ID) is rarely discussed. We redefine Group Re-identification as a process which includes pedestrian detection, feature extraction, graph model construction, and graph matching. Group re-identification is very challenging since it is not only interfered by view-point and human pose variations in the traditional re-identification tasks, but also suffered from the challenges in group layout change and group member variation. To address the above challenges, this paper introduces a novel approach which leverages the multi-granularity information inside groups to facilitate group re-identification. We first introduce a multi-granularity Re-ID process, which derives features for multi-granularity objects (people/people-subgroups) in a group and iteratively evaluates their importances during group Re-ID, so as to handle group-wise misalignments due to viewpoint change and group dynamics. We further introduce a multi-order matching scheme. It adaptively selects representative people/people-subgroups in each group and integrates the multi-granularity information from these people/people-subgroups to obtain group-wise matching, hence achieving a more reliable matching score between groups. Experimental results on various datasets demonstrate the effectiveness of our approach.
- Abstract(参考訳): オブジェクトの再識別は、視覚的監視において重要性を増す。
既存の研究の多くは、複数のカメラから個人を再識別することに焦点を当てているが、グループ再識別(Re-ID)の適用はめったに議論されていない。
歩行者検出,特徴抽出,グラフモデル構築,グラフマッチングを含むプロセスとして,グループ再識別を再定義する。
グループ再識別は、従来の再識別タスクにおいて、視点や人間のポーズのバリエーションに干渉されるだけでなく、グループレイアウトの変更やグループメンバーのバリエーションの課題にも悩まされているため、非常に難しい。
以上の課題に対処するために,グループ内の多粒度情報を活用してグループ再同定を容易にする手法を提案する。
まず,グループ内の多粒度オブジェクト(人・人・サブグループ)の特徴を導出する多粒度Re-IDプロセスを導入する。
さらに,マルチオーダーマッチング方式を導入する。
各グループの代表者/人-サブグループを適応的に選択し、これらのグループ/人-サブグループからの多粒度情報を統合してグループワイドマッチングを得るため、グループ間のより信頼性の高いマッチングスコアを達成する。
各種データセットに対する実験結果から,本手法の有効性が示された。
関連論文リスト
- Identification of Systematic Errors of Image Classifiers on Rare
Subgroups [12.064692111429494]
組織的エラーは、少数民族の公正性だけでなく、ドメインシフト時の堅牢性と安全性にも影響します。
我々は,テキスト・ツー・イメージ・モデルにおける最近の進歩を活用し,ターゲットモデルの性能が低いサブグループに対するサブグループのテキスト記述("prompts")の空間を探索する。
本稿では, PromptAttackによるサブグループカバレッジと識別可能性について検討し, 高い精度で系統的誤りを識別できることを見出した。
論文 参考訳(メタデータ) (2023-03-09T07:08:25Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
グループ識別のための文脈的要因認識(CFAG)という,GNNに基づく新しいフレームワークを提案する。
我々は3部グラフ畳み込み層を考案し、ユーザ、グループ、アイテム間の異なる種類の近隣からの情報を集約する。
データ疎度問題に対処するため,提案した因子化注意機構に基づく新しい伝搬増強層を考案した。
論文 参考訳(メタデータ) (2022-11-02T01:42:20Z) - AggNet: Learning to Aggregate Faces for Group Membership Verification [20.15673797674449]
いくつかの顔認識アプリケーションでは、個人がグループのメンバーであるかどうかを、そのアイデンティティを明らかにすることなく確認することに興味がある。
いくつかの既存手法では、事前計算された顔記述子を離散的な埋め込みに量子化し、それらを一つのグループ表現に集約する機構が提案されている。
本稿では,顔記述子とアグリゲーション機構を協調的に学習し,エンドツーエンドのパフォーマンスを向上させるディープアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-17T10:48:34Z) - Causal Scene BERT: Improving object detection by searching for
challenging groups of data [125.40669814080047]
コンピュータビジョンアプリケーションは、物体検出のようなタスクのためにニューラルネットワークでパラメータ化された学習ベースの知覚モジュールに依存している。
これらのモジュールは、トレーニングプロセスに固有のバイアスのため、予想される誤差が低いが、データの非定型的なグループに対して高い誤差を持つことが多い。
本研究の主な貢献は,シミュレートされたシーンに対して因果的介入を行うことにより,前向きにそのようなグループを発見する擬似オートマチック手法である。
論文 参考訳(メタデータ) (2022-02-08T05:14:16Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - GroupFormer: Group Activity Recognition with Clustered Spatial-Temporal
Transformer [16.988878921451484]
GroupFormerは、個人とグループ表現を増強するために、空間的・時間的コンテキスト情報を共同でキャプチャする。
提案するフレームワークは,VolleyballデータセットとCollective Activityデータセットの最先端メソッドよりも優れている。
論文 参考訳(メタデータ) (2021-08-28T11:24:36Z) - Learning Multi-Attention Context Graph for Group-Based Re-Identification [214.84551361855443]
オーバーラップしていないカメラシステムを介して人々のグループを再識別または取得することを学ぶことは、ビデオ監視において重要なアプリケーションです。
本研究では,グループre-idというグループを識別するためのコンテキスト情報の利用を検討する。
本研究では,グループベースリドタスクを同時に処理するグラフニューラルネットワークに基づく新しい統合フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-29T09:57:47Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
グループレコメンデータシステムは、ユーザの個人的な好みだけでなく、嗜好集約戦略も正確に学習できなければならない。
本稿では,BGEM(Bipartite Graphding Model)とGCN(Graph Convolutional Networks)を基本構造として,グループとユーザ表現を統一的に学習する。
論文 参考訳(メタデータ) (2020-10-02T07:11:19Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
人物再識別(re-ID)はコンピュータビジョンにおいて重要なトピックである。
本稿では,ラベル付き情報を必要としないre-IDの教師なし設定について検討する。
2つの画像ベースおよびビデオベースデータセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-04-07T17:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。