Performance Modeling and Workload Analysis of Distributed Large Language Model Training and Inference
- URL: http://arxiv.org/abs/2407.14645v1
- Date: Fri, 19 Jul 2024 19:49:05 GMT
- Title: Performance Modeling and Workload Analysis of Distributed Large Language Model Training and Inference
- Authors: Joyjit Kundu, Wenzhe Guo, Ali BanaGozar, Udari De Alwis, Sourav Sengupta, Puneet Gupta, Arindam Mallik,
- Abstract summary: We propose a general performance modeling methodology and workload analysis of distributed LLM training and inference.
We validate our performance predictions with published data from literature and relevant industry vendors (e.g., NVIDIA)
- Score: 2.2231908139555734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning future system design with the ever-increasing compute needs of large language models (LLMs) is undoubtedly an important problem in today's world. Here, we propose a general performance modeling methodology and workload analysis of distributed LLM training and inference through an analytical framework that accurately considers compute, memory sub-system, network, and various parallelization strategies (model parallel, data parallel, pipeline parallel, and sequence parallel). We validate our performance predictions with published data from literature and relevant industry vendors (e.g., NVIDIA). For distributed training, we investigate the memory footprint of LLMs for different activation re-computation methods, dissect the key factors behind the massive performance gain from A100 to B200 ($\sim$ 35x speed-up closely following NVIDIA's scaling trend), and further run a design space exploration at different technology nodes (12 nm to 1 nm) to study the impact of logic, memory, and network scaling on the performance. For inference, we analyze the compute versus memory boundedness of different operations at a matrix-multiply level for different GPU systems and further explore the impact of DRAM memory technology scaling on inference latency. Utilizing our modeling framework, we reveal the evolution of performance bottlenecks for both LLM training and inference with technology scaling, thus, providing insights to design future systems for LLM training and inference.
Related papers
- Hardware Scaling Trends and Diminishing Returns in Large-Scale Distributed Training [29.44470664154098]
We show that careful consideration of hardware configuration and parallelization strategy is critical for effective scaling of model size, training data, and total computation.
We conduct an extensive empirical study of the performance of large-scale LLM training workloads across model size, hardware configurations, and distributed parallelization strategies.
arXiv Detail & Related papers (2024-11-20T06:05:11Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning [37.745896674964186]
Multi-task learning (MTL) aims to improve the generalization performance of a model on multiple related tasks by training it simultaneously on those tasks.
Continual learning (CL) involves adapting to new sequentially arriving tasks over time without forgetting the previously acquired knowledge.
We develop theoretical results describing the effect of various system parameters on the model's performance in an MTL setup.
Our results reveal the impact of buffer size and model capacity on the forgetting rate in a CL setup and help shed light on some of the state-of-the-art CL methods.
arXiv Detail & Related papers (2024-08-29T23:22:40Z) - A Survey of Distributed Learning in Cloud, Mobile, and Edge Settings [1.0589208420411014]
This survey explores the landscape of distributed learning, encompassing cloud and edge settings.
We delve into the core concepts of data and model parallelism, examining how models are partitioned across different dimensions and layers to optimize resource utilization and performance.
We analyze various partitioning schemes for different layer types, including fully connected, convolutional, and recurrent layers, highlighting the trade-offs between computational efficiency, communication overhead, and memory constraints.
arXiv Detail & Related papers (2024-05-23T22:00:38Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Understanding LLMs: A Comprehensive Overview from Training to Inference [52.70748499554532]
Low-cost training and deployment of large language models represent the future development trend.
Discussion on training includes various aspects, including data preprocessing, training architecture, pre-training tasks, parallel training, and relevant content related to model fine-tuning.
On the inference side, the paper covers topics such as model compression, parallel computation, memory scheduling, and structural optimization.
arXiv Detail & Related papers (2024-01-04T02:43:57Z) - Performance Tuning for GPU-Embedded Systems: Machine-Learning-based and
Analytical Model-driven Tuning Methodologies [0.0]
The study introduces an analytical model-driven tuning methodology and a Machine Learning (ML)-based tuning methodology.
We evaluate the performance of the two tuning methodologies for different parallel prefix implementations of the BPLG library in an NVIDIA Jetson system.
arXiv Detail & Related papers (2023-10-24T22:09:03Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - MLPerfTM HPC: A Holistic Benchmark Suite for Scientific Machine Learning
on HPC Systems [32.621917787044396]
We introduceerf HPC, a benchmark suite of scientific machine learning training applications driven by the MLCommonsTM Association.
We develop a systematic framework for their joint analysis and compare them in terms of data staging, algorithmic convergence, and compute performance.
We conclude by characterizing each benchmark with respect to low-level memory, I/O, and network behavior.
arXiv Detail & Related papers (2021-10-21T20:30:12Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.