Contextual modulation of language comprehension in a dynamic neural model of lexical meaning
- URL: http://arxiv.org/abs/2407.14701v1
- Date: Fri, 19 Jul 2024 23:28:55 GMT
- Title: Contextual modulation of language comprehension in a dynamic neural model of lexical meaning
- Authors: Michael C. Stern, Maria M. PiƱango,
- Abstract summary: We demonstrate the architecture and behavior of the model using as a test case the English lexical item 'have', focusing on its polysemous use.
Results support a novel perspective on lexical polysemy: that the many related meanings of a word are metastable neural activation states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and computationally implement a dynamic neural model of lexical meaning, and experimentally test its behavioral predictions. We demonstrate the architecture and behavior of the model using as a test case the English lexical item 'have', focusing on its polysemous use. In the model, 'have' maps to a semantic space defined by two continuous conceptual dimensions, connectedness and control asymmetry, previously proposed to parameterize the conceptual system for language. The mapping is modeled as coupling between a neural node representing the lexical item and neural fields representing the conceptual dimensions. While lexical knowledge is modeled as a stable coupling pattern, real-time lexical meaning retrieval is modeled as the motion of neural activation patterns between metastable states corresponding to semantic interpretations or readings. Model simulations capture two previously reported empirical observations: (1) contextual modulation of lexical semantic interpretation, and (2) individual variation in the magnitude of this modulation. Simulations also generate a novel prediction that the by-trial relationship between sentence reading time and acceptability should be contextually modulated. An experiment combining self-paced reading and acceptability judgments replicates previous results and confirms the new model prediction. Altogether, results support a novel perspective on lexical polysemy: that the many related meanings of a word are metastable neural activation states that arise from the nonlinear dynamics of neural populations governing interpretation on continuous semantic dimensions.
Related papers
- On the Origins of Linear Representations in Large Language Models [51.88404605700344]
We introduce a simple latent variable model to formalize the concept dynamics of the next token prediction.
Experiments show that linear representations emerge when learning from data matching the latent variable model.
We additionally confirm some predictions of the theory using the LLaMA-2 large language model.
arXiv Detail & Related papers (2024-03-06T17:17:36Z) - Probabilistic Transformer: A Probabilistic Dependency Model for
Contextual Word Representation [52.270712965271656]
We propose a new model of contextual word representation, not from a neural perspective, but from a purely syntactic and probabilistic perspective.
We find that the graph of our model resembles transformers, with correspondences between dependencies and self-attention.
Experiments show that our model performs competitively to transformers on small to medium sized datasets.
arXiv Detail & Related papers (2023-11-26T06:56:02Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
The goal of this study is to investigate whether a Transformer-based neural language model infers lexical semantics.
The semantic properties considered are telicity (also combined with definiteness) and agentivity.
arXiv Detail & Related papers (2023-07-06T10:52:22Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Testing Pre-trained Language Models' Understanding of Distributivity via
Causal Mediation Analysis [13.07356367140208]
We introduce DistNLI, a new diagnostic dataset for natural language inference.
We find that the extent of models' understanding is associated with model size and vocabulary size.
arXiv Detail & Related papers (2022-09-11T00:33:28Z) - Pretraining on Interactions for Learning Grounded Affordance
Representations [22.290431852705662]
We train a neural network to predict objects' trajectories in a simulated interaction.
We show that our network's latent representations differentiate between both observed and unobserved affordances.
Our results suggest a way in which modern deep learning approaches to grounded language learning can be integrated with traditional formal semantic notions of lexical representations.
arXiv Detail & Related papers (2022-07-05T19:19:53Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - Implicit Representations of Meaning in Neural Language Models [31.71898809435222]
We identify contextual word representations that function as models of entities and situations as they evolve throughout a discourse.
Our results indicate that prediction in pretrained neural language models is supported, at least in part, by dynamic representations of meaning and implicit simulation of entity state.
arXiv Detail & Related papers (2021-06-01T19:23:20Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq abstractive summarization models generate text in a free-form manner.
We study the entropy, or uncertainty, of the model's token-level predictions.
We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.
arXiv Detail & Related papers (2020-10-15T16:57:27Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z) - Do Neural Models Learn Systematicity of Monotonicity Inference in
Natural Language? [41.649440404203595]
We introduce a method for evaluating whether neural models can learn systematicity of monotonicity inference in natural language.
We consider four aspects of monotonicity inferences and test whether the models can systematically interpret lexical and logical phenomena on different training/test splits.
arXiv Detail & Related papers (2020-04-30T14:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.