論文の概要: Hard Prompts Made Interpretable: Sparse Entropy Regularization for Prompt Tuning with RL
- arxiv url: http://arxiv.org/abs/2407.14733v1
- Date: Sat, 20 Jul 2024 03:10:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 21:14:02.682566
- Title: Hard Prompts Made Interpretable: Sparse Entropy Regularization for Prompt Tuning with RL
- Title(参考訳): 解釈可能なハードプロンプト:RLによるプロンプトチューニングのためのスパースエントロピー規則化
- Authors: Yunseon Choi, Sangmin Bae, Seonghyun Ban, Minchan Jeong, Chuheng Zhang, Lei Song, Li Zhao, Jiang Bian, Kee-Eung Kim,
- Abstract要約: ソフトQ-ラーニングを利用した最適なプロンプトを見つけることを目的としたRLPromptを提案する。
結果は有望な結果を示す一方で,プロンプトが不自然に現れることがしばしばあり,その解釈可能性を妨げることが確認されている。
この制限をスパルス・ツァリスエントロピー正規化(英語版)を用いて解決する。
- 参考スコア(独自算出の注目度): 29.01858866450715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of foundation models, prompt tuning has positioned itself as an important technique for directing model behaviors and eliciting desired responses. Prompt tuning regards selecting appropriate keywords included into the input, thereby adapting to the downstream task without adjusting or fine-tuning the model parameters. There is a wide range of work in prompt tuning, from approaches that directly harness the backpropagated gradient signals from the model, to those employing black-box optimization such as reinforcement learning (RL) methods. Our primary focus is on RLPrompt, which aims to find optimal prompt tokens leveraging soft Q-learning. While the results show promise, we have observed that the prompts frequently appear unnatural, which impedes their interpretability. We address this limitation by using sparse Tsallis entropy regularization, a principled approach to filtering out unlikely tokens from consideration. We extensively evaluate our approach across various tasks, including few-shot text classification, unsupervised text style transfer, and textual inversion from images. The results indicate a notable improvement over baselines, highlighting the efficacy of our approach in addressing the challenges of prompt tuning. Moreover, we show that the prompts discovered using our method are more natural and interpretable compared to those from other baselines.
- Abstract(参考訳): 基礎モデルの出現により、プロンプトチューニングは、モデル行動の指示と望ましい応答を引き出すための重要なテクニックとして位置づけられている。
プロンプトチューニングでは、入力に含まれる適切なキーワードを選択し、モデルパラメータを調整または微調整することなく下流タスクに適応する。
モデルからのバックプロパゲート勾配信号を直接利用するアプローチから、強化学習(RL)法のようなブラックボックス最適化を利用するアプローチまで、迅速なチューニングには幅広い作業がある。
RLPromptは、ソフトQ-ラーニングを活用した最適なプロンプトトークンを見つけることを目的としています。
結果は有望な結果を示す一方で,プロンプトが不自然に現れることがしばしばあり,その解釈可能性に障害があることがわかった。
この制限をスパルス・ツァリスエントロピー正規化(英語版)を用いて解決する。
テキスト分類や教師なしテキストスタイル転送,画像からのテキストインバージョンなど,さまざまなタスクに対するアプローチを幅広く評価する。
その結果,ベースラインよりも顕著な改善が示され,迅速なチューニングの課題に対処する上でのアプローチの有効性が強調された。
さらに,本手法を用いて検出したプロンプトは,他のベースラインのプロンプトよりも自然で解釈可能であることを示す。
関連論文リスト
- Prompt Tuning with Diffusion for Few-Shot Pre-trained Policy Generalization [55.14484317645865]
我々は,オフライン強化学習タスクにおいて,例外的な品質向上を促す条件拡散モデルを構築した。
本稿では,Promptディフューザがプロンプトチューニングプロセスの堅牢かつ効果的なツールであることを示し,メタRLタスクにおいて高い性能を示す。
論文 参考訳(メタデータ) (2024-11-02T07:38:02Z) - Eliciting Textual Descriptions from Representations of Continuous Prompts [11.489611613744724]
本稿では,モデル推論における表現からテキスト記述を抽出する連続的プロンプトの解釈手法を提案する。
本稿では,タスク性能が向上するにつれて,タスク記述の正確さが向上することを示す。
InSPEcTは、望ましくないプロパティを継続的なプロンプトでデバッグし、開発者がそれを緩和する方法を通知するために利用することができる。
論文 参考訳(メタデータ) (2024-10-15T14:46:11Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models [48.77653835765705]
そこでは,まず下位分布から潜在ベクトルをサンプリングし,次に軽量な生成モデルを用いてラベル固有のプロンプトを階層的に生成する。
提案手法の有効性は,少数ショット画像認識,ベース・ツー・ニュージェネリゼーション,データセット転送学習,ドメインシフトの4つのタスクで評価する。
論文 参考訳(メタデータ) (2023-03-16T06:09:15Z) - Gradient-Regulated Meta-Prompt Learning for Generalizable
Vision-Language Models [137.74524357614285]
グラディエント・レグルアテッドメタプロンプト学習フレームワークについて紹介する。
パラメーターとデータ -- 効率的な方法で下流タスクにモデルを適応させるのに役立つ。
GRAMはモデルに依存しない方法で様々なプロンプトチューニング手法に容易に組み込むことができる。
論文 参考訳(メタデータ) (2023-03-12T05:03:37Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
我々はベイズ法の正規化能力を用いて、変分推論問題としてプロンプト学習をフレーム化する。
提案手法は,プロンプト空間を正規化し,目に見えないプロンプトへの過剰適合を低減し,目に見えないプロンプトのプロンプト一般化を改善する。
ベイジアン・プロンプト学習がプロンプト空間の適切なカバレッジを提供する15のベンチマークを実証的に示す。
論文 参考訳(メタデータ) (2022-10-05T17:05:56Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。