DISCO: Embodied Navigation and Interaction via Differentiable Scene Semantics and Dual-level Control
- URL: http://arxiv.org/abs/2407.14758v1
- Date: Sat, 20 Jul 2024 05:39:28 GMT
- Title: DISCO: Embodied Navigation and Interaction via Differentiable Scene Semantics and Dual-level Control
- Authors: Xinyu Xu, Shengcheng Luo, Yanchao Yang, Yong-Lu Li, Cewu Lu,
- Abstract summary: Building a general-purpose intelligent home-assistant agent skilled in diverse tasks by human commands is a long-term blueprint of embodied AI research.
We study primitive mobile manipulations for embodied agents, i.e. how to navigate and interact based on an instructed verb-noun pair.
We propose DISCO, which features non-trivial advancements in contextualized scene modeling and efficient controls.
- Score: 53.80518003412016
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Building a general-purpose intelligent home-assistant agent skilled in diverse tasks by human commands is a long-term blueprint of embodied AI research, which poses requirements on task planning, environment modeling, and object interaction. In this work, we study primitive mobile manipulations for embodied agents, i.e. how to navigate and interact based on an instructed verb-noun pair. We propose DISCO, which features non-trivial advancements in contextualized scene modeling and efficient controls. In particular, DISCO incorporates differentiable scene representations of rich semantics in object and affordance, which is dynamically learned on the fly and facilitates navigation planning. Besides, we propose dual-level coarse-to-fine action controls leveraging both global and local cues to accomplish mobile manipulation tasks efficiently. DISCO easily integrates into embodied tasks such as embodied instruction following. To validate our approach, we take the ALFRED benchmark of large-scale long-horizon vision-language navigation and interaction tasks as a test bed. In extensive experiments, we make comprehensive evaluations and demonstrate that DISCO outperforms the art by a sizable +8.6% success rate margin in unseen scenes, even without step-by-step instructions. Our code is publicly released at https://github.com/AllenXuuu/DISCO.
Related papers
- Human-Object Interaction from Human-Level Instructions [16.70362477046958]
We present the first complete system that can synthesize object motion, full-body motion, and finger motion simultaneously from human-level instructions.
Our experiments demonstrate the effectiveness of our high-level planner in generating plausible target layouts and our low-level motion generator in synthesizing realistic interactions for diverse objects.
arXiv Detail & Related papers (2024-06-25T17:46:28Z) - HYPERmotion: Learning Hybrid Behavior Planning for Autonomous Loco-manipulation [7.01404330241523]
HYPERmotion is a framework that learns, selects and plans behaviors based on tasks in different scenarios.
We combine reinforcement learning with whole-body optimization to generate motion for 38 actuated joints.
Experiments in simulation and real-world show that learned motions can efficiently adapt to new tasks.
arXiv Detail & Related papers (2024-06-20T18:21:24Z) - Embodied Instruction Following in Unknown Environments [66.60163202450954]
We propose an embodied instruction following (EIF) method for complex tasks in the unknown environment.
We build a hierarchical embodied instruction following framework including the high-level task planner and the low-level exploration controller.
For the task planner, we generate the feasible step-by-step plans for human goal accomplishment according to the task completion process and the known visual clues.
arXiv Detail & Related papers (2024-06-17T17:55:40Z) - Aligning Knowledge Graph with Visual Perception for Object-goal Navigation [16.32780793344835]
We propose the Aligning Knowledge Graph with Visual Perception (AKGVP) method for object-goal navigation.
Our approach introduces continuous modeling of the hierarchical scene architecture and leverages visual-language pre-training to align natural language description with visual perception.
The integration of a continuous knowledge graph architecture and multimodal feature alignment empowers the navigator with a remarkable zero-shot navigation capability.
arXiv Detail & Related papers (2024-02-29T06:31:18Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually.
We propose to improve phrase grounding models' ability on localizing the active objects by: learning the role of objects undergoing change and extracting them accurately from the instructions.
We evaluate our framework on Ego4D and Epic-Kitchens datasets.
arXiv Detail & Related papers (2023-10-23T16:14:05Z) - Unified Human-Scene Interaction via Prompted Chain-of-Contacts [61.87652569413429]
Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality.
This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands.
arXiv Detail & Related papers (2023-09-14T17:59:49Z) - Multi-Agent Embodied Visual Semantic Navigation with Scene Prior
Knowledge [42.37872230561632]
In visual semantic navigation, the robot navigates to a target object with egocentric visual observations and the class label of the target is given.
Most of the existing models are only effective for single-agent navigation, and a single agent has low efficiency and poor fault tolerance when completing more complicated tasks.
We propose the multi-agent visual semantic navigation, in which multiple agents collaborate with others to find multiple target objects.
arXiv Detail & Related papers (2021-09-20T13:31:03Z) - ArraMon: A Joint Navigation-Assembly Instruction Interpretation Task in
Dynamic Environments [85.81157224163876]
We combine Vision-and-Language Navigation, assembling of collected objects, and object referring expression comprehension, to create a novel joint navigation-and-assembly task, named ArraMon.
During this task, the agent is asked to find and collect different target objects one-by-one by navigating based on natural language instructions in a complex, realistic outdoor environment.
We present results for several baseline models (integrated and biased) and metrics (nDTW, CTC, rPOD, and PTC), and the large model-human performance gap demonstrates that our task is challenging and presents a wide scope for future work.
arXiv Detail & Related papers (2020-11-15T23:30:36Z) - Improving Target-driven Visual Navigation with Attention on 3D Spatial
Relationships [52.72020203771489]
We investigate target-driven visual navigation using deep reinforcement learning (DRL) in 3D indoor scenes.
Our proposed method combines visual features and 3D spatial representations to learn navigation policy.
Our experiments, performed in the AI2-THOR, show that our model outperforms the baselines in both SR and SPL metrics.
arXiv Detail & Related papers (2020-04-29T08:46:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.