Human-Object Interaction with Vision-Language Model Guided Relative Movement Dynamics
- URL: http://arxiv.org/abs/2503.18349v1
- Date: Mon, 24 Mar 2025 05:18:04 GMT
- Title: Human-Object Interaction with Vision-Language Model Guided Relative Movement Dynamics
- Authors: Zekai Deng, Ye Shi, Kaiyang Ji, Lan Xu, Shaoli Huang, Jingya Wang,
- Abstract summary: This paper introduces a unified Human-Object Interaction framework.<n>It provides unified control over interactions with static scenes and dynamic objects using language commands.<n>Our framework supports long-horizon interactions among dynamic, articulated, and static objects.
- Score: 30.43930233035367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-Object Interaction (HOI) is vital for advancing simulation, animation, and robotics, enabling the generation of long-term, physically plausible motions in 3D environments. However, existing methods often fall short of achieving physics realism and supporting diverse types of interactions. To address these challenges, this paper introduces a unified Human-Object Interaction framework that provides unified control over interactions with static scenes and dynamic objects using language commands. The interactions between human and object parts can always be described as the continuous stable Relative Movement Dynamics (RMD) between human and object parts. By leveraging the world knowledge and scene perception capabilities of Vision-Language Models (VLMs), we translate language commands into RMD diagrams, which are used to guide goal-conditioned reinforcement learning for sequential interaction with objects. Our framework supports long-horizon interactions among dynamic, articulated, and static objects. To support the training and evaluation of our framework, we present a new dataset named Interplay, which includes multi-round task plans generated by VLMs, covering both static and dynamic HOI tasks. Extensive experiments demonstrate that our proposed framework can effectively handle a wide range of HOI tasks, showcasing its ability to maintain long-term, multi-round transitions. For more details, please refer to our project webpage: https://rmd-hoi.github.io/.
Related papers
- Learning Video Generation for Robotic Manipulation with Collaborative Trajectory Control [72.00655365269]
We present RoboMaster, a novel framework that models inter-object dynamics through a collaborative trajectory formulation.<n>Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction.<n>Our method outperforms existing approaches, establishing new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation.
arXiv Detail & Related papers (2025-06-02T17:57:06Z) - HOSIG: Full-Body Human-Object-Scene Interaction Generation with Hierarchical Scene Perception [57.37135310143126]
HO SIG is a novel framework for synthesizing full-body interactions through hierarchical scene perception.<n>Our framework supports unlimited motion length through autoregressive generation and requires minimal manual intervention.<n>This work bridges the critical gap between scene-aware navigation and dexterous object manipulation.
arXiv Detail & Related papers (2025-06-02T12:08:08Z) - Humanoid-VLA: Towards Universal Humanoid Control with Visual Integration [28.825612240280822]
We propose a novel framework that integrates language understanding, egocentric scene perception, and motion control, enabling universal humanoid control.<n>Humanoid-VLA begins with language-motion pre-alignment using non-egocentric human motion datasets paired with textual descriptions.<n>We then incorporate egocentric visual context through a parameter efficient video-conditioned fine-tuning, enabling context-aware motion generation.
arXiv Detail & Related papers (2025-02-20T18:17:11Z) - InterDyn: Controllable Interactive Dynamics with Video Diffusion Models [50.38647583839384]
We propose InterDyn, a framework that generates videos of interactive dynamics given an initial frame and a control signal encoding the motion of a driving object or actor.
Our key insight is that large video generation models can act as both neurals and implicit physics simulators'', having learned interactive dynamics from large-scale video data.
arXiv Detail & Related papers (2024-12-16T13:57:02Z) - A Unified Framework for Motion Reasoning and Generation in Human Interaction [28.736843383405603]
We introduce Versatile Interactive Motion-language model, which integrates both language and motion modalities.<n>VIM is capable of simultaneously understanding and generating both motion and text modalities.<n>We evaluate VIM across multiple interactive motion-related tasks, including motion-to-text, text-to-motion, reaction generation, motion editing, and reasoning about motion sequences.
arXiv Detail & Related papers (2024-10-08T02:23:53Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - Human-Object Interaction from Human-Level Instructions [17.10279738828331]
We propose the first complete system for synthesizing human-object interactions for object manipulation in contextual environments.<n>We leverage large language models (LLMs) to interpret the input instructions into detailed execution plans.<n>Unlike prior work, our system is capable of generating detailed finger-object interactions, in seamless coordination with full-body movements.
arXiv Detail & Related papers (2024-06-25T17:46:28Z) - FreeMotion: MoCap-Free Human Motion Synthesis with Multimodal Large Language Models [19.09048969615117]
We explore open-set human motion synthesis using natural language instructions as user control signals based on MLLMs.
Our method can achieve general human motion synthesis for many downstream tasks.
arXiv Detail & Related papers (2024-06-15T21:10:37Z) - InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction [27.10256777126629]
This paper showcases the potential of generating human-object interactions without direct training on text-interaction pair data.
We introduce a world model designed to comprehend simple physics, modeling how human actions influence object motion.
By integrating these components, our novel framework, InterDreamer, is able to generate text-aligned 3D HOI sequences in a zero-shot manner.
arXiv Detail & Related papers (2024-03-28T17:59:30Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - Revisit Human-Scene Interaction via Space Occupancy [55.67657438543008]
Human-scene Interaction (HSI) generation is a challenging task and crucial for various downstream tasks.
In this work, we argue that interaction with a scene is essentially interacting with the space occupancy of the scene from an abstract physical perspective.
By treating pure motion sequences as records of humans interacting with invisible scene occupancy, we can aggregate motion-only data into a large-scale paired human-occupancy interaction database.
arXiv Detail & Related papers (2023-12-05T12:03:00Z) - Unified Human-Scene Interaction via Prompted Chain-of-Contacts [61.87652569413429]
Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality.
This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands.
arXiv Detail & Related papers (2023-09-14T17:59:49Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
We create a neural interaction field attached to a specific object, which outputs the distance to the valid interaction manifold given a human pose as input.
This interaction field guides the sampling of an object-conditioned human motion diffusion model.
We synthesize realistic motions for sitting and lifting with several objects, outperforming alternative approaches in terms of motion quality and successful action completion.
arXiv Detail & Related papers (2023-07-14T17:59:38Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that can be extracted for robot manipulation.
We aim to synthesize robot trajectories for a variety of manipulation tasks given an open-set of instructions and an open-set of objects.
We demonstrate how the proposed framework can benefit from online experiences by efficiently learning a dynamics model for scenes that involve contact-rich interactions.
arXiv Detail & Related papers (2023-07-12T07:40:48Z) - Synthesizing Diverse Human Motions in 3D Indoor Scenes [16.948649870341782]
We present a novel method for populating 3D indoor scenes with virtual humans that can navigate in the environment and interact with objects in a realistic manner.
Existing approaches rely on training sequences that contain captured human motions and the 3D scenes they interact with.
We propose a reinforcement learning-based approach that enables virtual humans to navigate in 3D scenes and interact with objects realistically and autonomously.
arXiv Detail & Related papers (2023-05-21T09:22:24Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions [69.95820880360345]
We present the first framework to synthesize the full-body motion of virtual human characters with 3D objects placed within their reach.
Our system takes as input textual instructions specifying the objects and the associated intentions of the virtual characters.
We show that our synthesized full-body motions appear more realistic to the participants in more than 80% of scenarios.
arXiv Detail & Related papers (2022-12-14T23:59:24Z) - D-Grasp: Physically Plausible Dynamic Grasp Synthesis for Hand-Object
Interactions [47.55376158184854]
We introduce the dynamic synthesis grasp task.
Given an object with a known 6D pose and a grasp reference, our goal is to generate motions that move the object to a target 6D pose.
A hierarchical approach decomposes the task into low-level grasping and high-level motion synthesis.
arXiv Detail & Related papers (2021-12-01T17:04:39Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibson is a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes.
Our environment contains fifteen fully interactive home-sized scenes populated with rigid and articulated objects.
iGibson features enable the generalization of navigation agents, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of simple human demonstrated behaviors.
arXiv Detail & Related papers (2020-12-05T02:14:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.