Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter?
- URL: http://arxiv.org/abs/2407.14790v2
- Date: Fri, 4 Oct 2024 04:58:12 GMT
- Title: Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter?
- Authors: Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin RRV, Nisarg Patel, Mutsumi Nakamura, Arindam Mitra, Chitta Baral,
- Abstract summary: We develop GridPuzzle, an evaluation dataset comprising 274 grid-based puzzles with different complexities.
Second, we propose a new error taxonomy derived from manual analysis of reasoning chains from LLMs including GPT-4, Claude-3, Gemini, Mistral, and Llama-2.
Third, we develop an LLM-based framework for large-scale subjective evaluation (i.e., identifying errors) and an objective metric, PuzzleEval, to evaluate the correctness of reasoning chains.
- Score: 36.14795256060537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving grid puzzles involves a significant amount of logical reasoning. Hence, it is a good domain to evaluate the reasoning capability of a model which can then guide us to improve the reasoning ability of models. However, most existing works evaluate only the final predicted answer of a puzzle, without delving into an in-depth analysis of the LLMs' reasoning chains (such as where they falter) or providing any finer metrics to evaluate them. Since LLMs may rely on simple heuristics or artifacts to predict the final answer, it is crucial to evaluate the generated reasoning chain beyond overall correctness measures, for accurately evaluating the reasoning abilities of LLMs. To this end, we first develop GridPuzzle, an evaluation dataset comprising 274 grid-based puzzles with different complexities. Second, we propose a new error taxonomy derived from manual analysis of reasoning chains from LLMs including GPT-4, Claude-3, Gemini, Mistral, and Llama-2. Then, we develop an LLM-based framework for large-scale subjective evaluation (i.e., identifying errors) and an objective metric, PuzzleEval, to evaluate the correctness of reasoning chains. Evaluating reasoning chains from LLMs leads to several interesting findings. We further show that existing prompting methods used for enhancing models' reasoning abilities do not improve performance on GridPuzzle. This highlights the importance of understanding fine-grained errors and presents a challenge for future research to enhance LLMs' puzzle-solving abilities by developing methods that address these errors. Data and source code are available at https://github.com/Mihir3009/GridPuzzle.
Related papers
- Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z) - On Memorization of Large Language Models in Logical Reasoning [70.94164038947078]
Large language models (LLMs) achieve good performance on challenging reasoning benchmarks, yet could also make basic reasoning mistakes.
One hypothesis is that the increasingly high and nearly saturated performance could be due to the memorization of similar problems.
We show that fine-tuning leads to heavy memorization, but it also consistently improves generalization performance.
arXiv Detail & Related papers (2024-10-30T15:31:54Z) - LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMs struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the wordstrawberry.
We measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks.
Compared with strategies such as finetuning and in-context learning, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks.
arXiv Detail & Related papers (2024-10-18T04:17:16Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
Large language models (LLMs) perform surprisingly well and outperform human experts on many tasks.
This paper integrates and optimized a pipeline for selecting reasoning paths from KG based on LLM.
We also propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank.
arXiv Detail & Related papers (2024-04-16T08:28:16Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
Large language models (LLMs) demonstrate strong reasoning abilities when prompted to generate chain-of-thought explanations alongside answers.
We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs' knowledge of reasoning and the accuracy of the generated CoT.
arXiv Detail & Related papers (2024-02-17T05:22:56Z) - Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems [17.80128896525717]
backward reasoning is relatively unexplored.
backward reasoning can be seen as the ''inverse'' of forward reasoning.
We propose variations of three different forward reasoning strategies to improve performance.
arXiv Detail & Related papers (2023-10-03T12:03:06Z) - Furthest Reasoning with Plan Assessment: Stable Reasoning Path with
Retrieval-Augmented Large Language Models [10.04323204974924]
Multi-Hop Question Answering (MHQA) stands as a widely discussed category.
Existing methods employ Large Language Models (LLMs) to generate reasoning paths and plans.
We propose a novel pipeline for MHQA called Furthest-Reasoning-with-Plan-Assessment (FuRePA)
arXiv Detail & Related papers (2023-09-22T10:15:13Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - GraphReason: Enhancing Reasoning Capabilities of Large Language Models through A Graph-Based Verification Approach [0.0]
Large Language Models (LLMs) have showcased impressive reasoning capabilities.
In this paper, we introduce a novel graph-based method to further augment the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2023-08-18T03:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.