FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving
- URL: http://arxiv.org/abs/2502.20238v1
- Date: Thu, 27 Feb 2025 16:23:25 GMT
- Title: FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving
- Authors: Guizhen Chen, Weiwen Xu, Hao Zhang, Hou Pong Chan, Chaoqun Liu, Lidong Bing, Deli Zhao, Anh Tuan Luu, Yu Rong,
- Abstract summary: FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.<n>We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.<n>We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
- Score: 90.88021670297664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the "System 1" way of quick reactions to the "System 2" style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model's intermediate reasoning steps unexamined. This fails to assess the model's ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for fine-grained evaluation of LLMs' reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing performance on general mathematical tasks. We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
Related papers
- R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.
Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.
We propose Reasoning-Driven Process Reward Modeling (R-PRM)
R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - Large Language Models and Mathematical Reasoning Failures [1.6114012813668932]
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems.<n>We rigorously analyze both final answers and solution steps to identify reasoning failures.<n>We find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic.
arXiv Detail & Related papers (2025-02-17T09:07:32Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTO is a training framework that combines process-level and outcome-level binary feedback.<n>Our experiments show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps.
arXiv Detail & Related papers (2025-01-18T15:38:03Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - SuperCorrect: Advancing Small LLM Reasoning with Thought Template Distillation and Self-Correction [89.56181323849512]
SuperCorrect is a novel two-stage framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model.<n>In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts.<n>In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model.
arXiv Detail & Related papers (2024-10-11T17:25:52Z) - Recursive Introspection: Teaching Language Model Agents How to Self-Improve [30.086494067593268]
We develop RISE: Recursive IntroSpEction, an approach for fine-tuning large language models.
Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks.
arXiv Detail & Related papers (2024-07-25T17:35:59Z) - Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter? [36.14795256060537]
We develop GridPuzzle, an evaluation dataset comprising 274 grid-based puzzles with different complexities.
Second, we propose a new error taxonomy derived from manual analysis of reasoning chains from LLMs including GPT-4, Claude-3, Gemini, Mistral, and Llama-2.
Third, we develop an LLM-based framework for large-scale subjective evaluation (i.e., identifying errors) and an objective metric, PuzzleEval, to evaluate the correctness of reasoning chains.
arXiv Detail & Related papers (2024-07-20T07:43:07Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning [15.59540726867483]
We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness.
Inspired by the findings that $textitoutcome supervision for guided decoding essentially acts as a value model, we propose Outcome-supervised Value Model (OVM)
Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model.
arXiv Detail & Related papers (2023-11-16T09:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.