論文の概要: POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation
- arxiv url: http://arxiv.org/abs/2407.14931v1
- Date: Sat, 20 Jul 2024 16:37:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:58:07.215404
- Title: POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation
- Title(参考訳): POGEMA: 協調型マルチエージェントナビゲーションのためのベンチマークプラットフォーム
- Authors: Alexey Skrynnik, Anton Andreychuk, Anatolii Borzilov, Alexander Chernyavskiy, Konstantin Yakovlev, Aleksandr Panov,
- Abstract要約: 主評価指標の基礎に基づいて計算された領域関連メトリクスの範囲を定義する評価プロトコルを導入・指定する。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
- 参考スコア(独自算出の注目度): 76.67608003501479
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning (MARL) has recently excelled in solving challenging cooperative and competitive multi-agent problems in various environments with, mostly, few agents and full observability. Moreover, a range of crucial robotics-related tasks, such as multi-robot navigation and obstacle avoidance, that have been conventionally approached with the classical non-learnable methods (e.g., heuristic search) is currently suggested to be solved by the learning-based or hybrid methods. Still, in this domain, it is hard, not to say impossible, to conduct a fair comparison between classical, learning-based, and hybrid approaches due to the lack of a unified framework that supports both learning and evaluation. To this end, we introduce POGEMA, a set of comprehensive tools that includes a fast environment for learning, a generator of problem instances, the collection of pre-defined ones, a visualization toolkit, and a benchmarking tool that allows automated evaluation. We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators (such as success rate and path length), allowing a fair multi-fold comparison. The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
- Abstract(参考訳): マルチエージェント強化学習(MARL)は, エージェントがほとんどなく, 完全可観測性もほとんどない, 様々な環境において, 協調的かつ競争的なマルチエージェント問題の解決に長けている。
さらに,従来の非学習的手法(例えばヒューリスティック検索)でアプローチされてきたマルチロボットナビゲーションや障害物回避といった,ロボット関連の重要なタスクは,現在,学習ベースの手法やハイブリッド手法によって解決されている。
しかし、この領域では、学習と評価の両方をサポートする統一されたフレームワークが欠如しているため、古典的、学習ベースの、ハイブリッドなアプローチを公平に比較することは不可能ではない。
この目的のために我々は,学習のための高速環境,問題インスタンスの生成,事前定義された問題の収集,視覚化ツールキット,自動評価が可能なベンチマークツールなどを含む総合的なツールのセットであるPOGEMAを紹介する。
本稿では,主評価指標(成功率や経路長など)の基本値に基づいて計算されたドメイン関連指標の範囲を定義した評価プロトコルを導入・指定し,適正なマルチフォールド比較を可能にする。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
関連論文リスト
- Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
本稿では,既存のMTL手法の効率性に焦点をあてる。
バックボーンを小さくしたメソッドの大規模な実験と,MetaGraspNetデータセットを新しいテストグラウンドとして実施する。
また,MTLにおける課題の新規かつ効率的な識別子として,特徴分散尺度を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:15:55Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Revisiting Some Common Practices in Cooperative Multi-Agent
Reinforcement Learning [11.91425153754564]
高いマルチモーダルな報酬ランドスケープ、価値分解、パラメータ共有が問題になり、望ましくない結果をもたらす可能性があることを示す。
対照的に、個々のポリシーを持つポリシー勾配(PG)法は、これらの場合において最適解に確実に収束する。
本稿では,多エージェントPGアルゴリズムの実装に関する実践的提案を行う。
論文 参考訳(メタデータ) (2022-06-15T13:03:05Z) - Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent
Reinforcement Learning [15.12491397254381]
本稿では,暗黙的なモデルに基づくマルチエージェント強化学習手法を提案する。
この方法では,エージェントは学習した仮想環境と対話し,将来の予測状態に応じて現在の状態値を評価することができる。
論文 参考訳(メタデータ) (2022-04-20T12:16:27Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Multi-scale Adaptive Task Attention Network for Few-Shot Learning [5.861206243996454]
少数ショット学習の目標は、ラベル付きサンプルの少ない未確認カテゴリを分類することである。
本稿では,マルチスケール適応タスク注意ネットワーク(MATANet)を提案する。
論文 参考訳(メタデータ) (2020-11-30T00:36:01Z) - Symbiotic Adversarial Learning for Attribute-based Person Search [86.7506832053208]
本稿では,共生学習の枠組みとして,共生学習の基盤に2つのGANを配置する。
具体的には、2種類の生成的敵ネットワークがトレーニングプロセスを通して協調的に学習する。
論文 参考訳(メタデータ) (2020-07-19T07:24:45Z) - Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
Cooperative Tasks [11.480994804659908]
マルチエージェント深部強化学習(MARL)は、一般的に使われている評価課題や基準の欠如に悩まされている。
我々は,MARLアルゴリズムの3つのクラスを体系的に評価し,比較する。
我々の実験は、異なる学習課題におけるアルゴリズムの期待性能の基準として機能する。
論文 参考訳(メタデータ) (2020-06-14T11:22:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。