Operationalizing a Threat Model for Red-Teaming Large Language Models (LLMs)
- URL: http://arxiv.org/abs/2407.14937v1
- Date: Sat, 20 Jul 2024 17:05:04 GMT
- Title: Operationalizing a Threat Model for Red-Teaming Large Language Models (LLMs)
- Authors: Apurv Verma, Satyapriya Krishna, Sebastian Gehrmann, Madhavan Seshadri, Anu Pradhan, Tom Ault, Leslie Barrett, David Rabinowitz, John Doucette, NhatHai Phan,
- Abstract summary: Red-teaming is a technique for identifying vulnerabilities in large language models (LLM)
This paper presents a detailed threat model and provides a systematization of knowledge (SoK) of red-teaming attacks on LLMs.
- Score: 17.670925982912312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Creating secure and resilient applications with large language models (LLM) requires anticipating, adjusting to, and countering unforeseen threats. Red-teaming has emerged as a critical technique for identifying vulnerabilities in real-world LLM implementations. This paper presents a detailed threat model and provides a systematization of knowledge (SoK) of red-teaming attacks on LLMs. We develop a taxonomy of attacks based on the stages of the LLM development and deployment process and extract various insights from previous research. In addition, we compile methods for defense and practical red-teaming strategies for practitioners. By delineating prominent attack motifs and shedding light on various entry points, this paper provides a framework for improving the security and robustness of LLM-based systems.
Related papers
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)
In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.
We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.
Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, but their vulnerability to jailbreak attacks poses significant security risks.
This survey paper presents a comprehensive analysis of recent advancements in attack strategies and defense mechanisms within the field of Large Language Model (LLM) red-teaming.
arXiv Detail & Related papers (2024-10-09T01:35:38Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
Large Language Models (LLMs) have revolutionized various applications by providing advanced natural language processing capabilities.
This paper explores the threat modeling and risk analysis specifically tailored for LLM-powered applications.
arXiv Detail & Related papers (2024-06-16T16:43:58Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Tiny Refinements Elicit Resilience: Toward Efficient Prefix-Model Against LLM Red-Teaming [37.32997502058661]
This paper introduces the textbfsentinel model as a plug-and-play prefix module designed to reconstruct the input prompt with just a few tokens.
The sentinel model naturally overcomes the textit parameter inefficiency and textitlimited model accessibility for fine-tuning large target models.
Our experiments across text-to-text and text-to-image demonstrate the effectiveness of our approach in mitigating toxic outputs.
arXiv Detail & Related papers (2024-05-21T08:57:44Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.