Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications
- URL: http://arxiv.org/abs/2406.11007v1
- Date: Sun, 16 Jun 2024 16:43:58 GMT
- Title: Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications
- Authors: Stephen Burabari Tete,
- Abstract summary: Large Language Models (LLMs) have revolutionized various applications by providing advanced natural language processing capabilities.
This paper explores the threat modeling and risk analysis specifically tailored for LLM-powered applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The advent of Large Language Models (LLMs) has revolutionized various applications by providing advanced natural language processing capabilities. However, this innovation introduces new cybersecurity challenges. This paper explores the threat modeling and risk analysis specifically tailored for LLM-powered applications. Focusing on potential attacks like data poisoning, prompt injection, SQL injection, jailbreaking, and compositional injection, we assess their impact on security and propose mitigation strategies. We introduce a framework combining STRIDE and DREAD methodologies for proactive threat identification and risk assessment. Furthermore, we examine the feasibility of an end-to-end threat model through a case study of a custom-built LLM-powered application. This model follows Shostack's Four Question Framework, adjusted for the unique threats LLMs present. Our goal is to propose measures that enhance the security of these powerful AI tools, thwarting attacks, and ensuring the reliability and integrity of LLM-integrated systems.
Related papers
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - SoK: Prompt Hacking of Large Language Models [5.056128048855064]
The safety and robustness of large language models (LLMs) based applications remain critical challenges in artificial intelligence.
We offer a comprehensive and systematic overview of three distinct types of prompt hacking: jailbreaking, leaking, and injection.
We propose a novel framework that categorizes LLM responses into five distinct classes, moving beyond the traditional binary classification.
arXiv Detail & Related papers (2024-10-16T01:30:41Z) - Operationalizing a Threat Model for Red-Teaming Large Language Models (LLMs) [17.670925982912312]
Red-teaming is a technique for identifying vulnerabilities in large language models (LLM)
This paper presents a detailed threat model and provides a systematization of knowledge (SoK) of red-teaming attacks on LLMs.
arXiv Detail & Related papers (2024-07-20T17:05:04Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)
We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.
We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.