論文の概要: D$^4$-VTON: Dynamic Semantics Disentangling for Differential Diffusion based Virtual Try-On
- arxiv url: http://arxiv.org/abs/2407.15111v1
- Date: Sun, 21 Jul 2024 10:40:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:18:45.648873
- Title: D$^4$-VTON: Dynamic Semantics Disentangling for Differential Diffusion based Virtual Try-On
- Title(参考訳): D$^4$-VTON:微分拡散に基づく仮想試行のための動的意味分離
- Authors: Zhaotong Yang, Zicheng Jiang, Xinzhe Li, Huiyu Zhou, Junyu Dong, Huaidong Zhang, Yong Du,
- Abstract要約: D$4$-VTONは画像ベースの仮想試行のための革新的なソリューションである。
我々は,服飾の前後における意味的不整合など,過去の研究の課題に対処する。
- 参考スコア(独自算出の注目度): 32.73798955587999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce D$^4$-VTON, an innovative solution for image-based virtual try-on. We address challenges from previous studies, such as semantic inconsistencies before and after garment warping, and reliance on static, annotation-driven clothing parsers. Additionally, we tackle the complexities in diffusion-based VTON models when handling simultaneous tasks like inpainting and denoising. Our approach utilizes two key technologies: Firstly, Dynamic Semantics Disentangling Modules (DSDMs) extract abstract semantic information from garments to create distinct local flows, improving precise garment warping in a self-discovered manner. Secondly, by integrating a Differential Information Tracking Path (DITP), we establish a novel diffusion-based VTON paradigm. This path captures differential information between incomplete try-on inputs and their complete versions, enabling the network to handle multiple degradations independently, thereby minimizing learning ambiguities and achieving realistic results with minimal overhead. Extensive experiments demonstrate that D$^4$-VTON significantly outperforms existing methods in both quantitative metrics and qualitative evaluations, demonstrating its capability in generating realistic images and ensuring semantic consistency.
- Abstract(参考訳): 本稿では,D$^4$-VTONを提案する。
我々は,服飾の前後における意味的不整合や,静的なアノテーションによる衣服解析への依存など,過去の研究の課題に対処する。
さらに, インペイントやデノイングといった同時処理を行う場合, 拡散型VTONモデルの複雑さに対処する。
まず、動的セマンティック・ディアンタングリング・モジュール(DSDM)は、衣服から抽象的な意味情報を抽出し、異なる局所フローを生成する。
次に、差分情報追跡経路(DITP)を統合することにより、新しい拡散に基づくVTONパラダイムを確立する。
このパスは、不完全な試行入力と完全なバージョン間の差分情報をキャプチャし、ネットワークが複数の劣化を個別に処理できるようにし、学習のあいまいさを最小化し、オーバーヘッドを最小限にして現実的な結果を達成する。
大規模な実験により、D$^4$-VTONは、定量測定と定性評価の両方において既存の手法を著しく上回り、現実的な画像を生成する能力を示し、セマンティック一貫性を確保する。
関連論文リスト
- Generalizable Implicit Neural Representation As a Universal Spatiotemporal Traffic Data Learner [46.866240648471894]
時空間交通データ(STTD)は、マルチスケール交通システムの複雑な動的挙動を測定する。
本稿では,STTDを暗黙的ニューラル表現としてパラメータ化することで,STTD学習問題に対処する新しいパラダイムを提案する。
実世界のシナリオにおける広範な実験を通じて,その有効性を検証し,廊下からネットワークスケールへの応用を示す。
論文 参考訳(メタデータ) (2024-06-13T02:03:22Z) - Diffusion Features to Bridge Domain Gap for Semantic Segmentation [2.8616666231199424]
本稿では, 拡散モデルの特徴を効率的に活用するために, サンプリングおよび融合技術を活用するアプローチについて検討する。
テキスト・画像生成能力の強みを生かして、暗黙的に後部知識を学習する新しいトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-02T15:33:46Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
時空間交通データ(STTD)は、マルチスケール交通システムの複雑な動的挙動を測定する。
本稿では,STTDを暗黙的ニューラル表現としてパラメータ化することで,STTD学習問題に対処する新しいパラダイムを提案する。
実世界のシナリオにおける広範な実験を通じて,その有効性を検証し,廊下からネットワークスケールへの応用を示す。
論文 参考訳(メタデータ) (2024-05-06T06:23:06Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - ContraFeat: Contrasting Deep Features for Semantic Discovery [102.4163768995288]
StyleGANは、アンタングル化セマンティックコントロールの強い可能性を示している。
StyleGANの既存の意味発見手法は、修正された潜在層を手作業で選択することで、良好な操作結果が得られる。
本稿では,このプロセスを自動化し,最先端のセマンティック発見性能を実現するモデルを提案する。
論文 参考訳(メタデータ) (2022-12-14T15:22:13Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
プロキシタスクによる一貫性の導入は、データ駆動学習を強化することが示されている。
本稿では,光フロー推定のための新しい,効果的な整合性戦略を提案する。
論文 参考訳(メタデータ) (2022-04-14T22:58:30Z) - Style-Hallucinated Dual Consistency Learning for Domain Generalized
Semantic Segmentation [117.3856882511919]
本稿では、ドメインシフトを処理するためのStyle-HAllucinated Dual consistEncy Learning(SHADE)フレームワークを提案する。
SHADEは3つの実世界のデータセットの平均mIoUに対して5.07%と8.35%の精度で改善し、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-06T02:49:06Z) - Improving Multimodal fusion via Mutual Dependency Maximisation [5.73995120847626]
マルチモーダル・感情分析は研究のトレンドとなっている分野であり、マルチモーダル・フュージョンは最も活発なトピックの1つである。
本研究では,未探索の罰則を調査し,モダリティ間の依存性を測定するための新たな目的セットを提案する。
我々は、我々の新しい罰則が様々な最先端モデルに対して一貫した改善(正確性で最大4.3ドル)をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-31T06:26:26Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。